Detailed Information

Cited 4 time in webofscience Cited 6 time in scopus
Metadata Downloads

Upregulation of TRESK Channels Contributes to Motor and Sensory Recovery after Spinal Cord Injuryopen access

Authors
Kim, Gyu-TaeSiregar, Adrian S.Kim, Eun-JinLee, Eun-ShinNyiramana, Marie MerciWoo, Min SeokHah, Young-SoolHan, JaeheeKang, Dawon
Issue Date
Dec-2020
Publisher
MDPI
Keywords
dorsal root ganglion; inflammation; oxidative stress; spinal cord injuries; two-pore domain K+ channel
Citation
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.21, no.23
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume
21
Number
23
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/5855
DOI
10.3390/ijms21238997
ISSN
1661-6596
Abstract
TWIK (tandem-pore domain weak inward rectifying K+)-related spinal cord K+ channel (TRESK), a member of the two-pore domain K+ channel family, is abundantly expressed in dorsal root ganglion (DRG) neurons. It is well documented that TRESK expression is changed in several models of peripheral nerve injury, resulting in a shift in sensory neuron excitability. However, the role of TRESK in the model of spinal cord injury (SCI) has not been fully understood. This study investigates the role of TRESK in a thoracic spinal cord contusion model, and in transgenic mice overexpressed with the TRESK gene (TG(TRESK)). Immunostaining analysis showed that TRESK was expressed in the dorsal and ventral neurons of the spinal cord. The TRESK expression was increased by SCI in both dorsal and ventral neurons. TRESK mRNA expression was upregulated in the spinal cord and DRG isolated from the ninth thoracic (T9) spinal cord contusion rats. The expression was significantly upregulated in the spinal cord below the injury site at acute time points (6, 24, and 48 h) after SCI (p < 0.05). In addition, TRESK expression was markedly increased in DRGs below and adjacent to the injury site. TRESK was expressed in inflammatory cells. In addition, the number and fluorescence intensity of TRESK-positive neurons increased in the dorsal and ventral horns of the spinal cord after SCI. TG(TRESK) SCI mice showed faster paralysis recovery and higher mechanical threshold compared to wild-type (WT)-SCI mice. TG(TRESK) mice showed lower TNF-alpha concentrations in the blood than WT mice. In addition, IL-1 beta concentration and apoptotic signals in the caudal spinal cord and DRG were significantly decreased in TG(TRESK) SCI mice compared to WT-SCI mice (p < 0.05). These results indicate that TRESK upregulated following SCI contributes to the recovery of paralysis and mechanical pain threshold by suppressing the excitability of motor and sensory neurons and inflammatory and apoptotic processes.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Da Won photo

Kang, Da Won
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE