Detailed Information

Cited 0 time in webofscience Cited 4 time in scopus
Metadata Downloads

Machine Learning Approach for Characteristics Prediction of 4H-Silicon Carbide NMOSFET by Process Conditions

Full metadata record
DC Field Value Language
dc.contributor.authorHa, Jonghyeon-
dc.contributor.authorLee, Gyeongyeop-
dc.contributor.authorKim, Jungsik-
dc.date.accessioned2022-12-26T12:01:51Z-
dc.date.available2022-12-26T12:01:51Z-
dc.date.issued2021-08-23-
dc.identifier.issn2640-821X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/5729-
dc.description.abstractIn this work, the electrical characteristics with various process conditions in 4H-Silicon Carbide NMOSFET are analyzed by using various machine learning algorithms. Here, the methods of machine learning, Light Gradient Boost Machine (LGBM) and Deep Neural Network (DNN) are compared for data analysis generated by Technical Computer- Aided (TCAD) simulation. Through the methods of machine learning, we analyzed the influence of process parameters for electrical characteristics. This work provides the vision that machine learning is a powerful method for analyzing and optimizing the performance of the 4H-silicon carbide MOSFET.-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleMachine Learning Approach for Characteristics Prediction of 4H-Silicon Carbide NMOSFET by Process Conditions-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TENSYMP52854.2021.9550872-
dc.identifier.scopusid2-s2.0-85117505218-
dc.identifier.wosid000786502700056-
dc.identifier.bibliographicCitation2021 IEEE REGION 10 SYMPOSIUM (TENSYMP)-
dc.citation.title2021 IEEE REGION 10 SYMPOSIUM (TENSYMP)-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordAuthorMachine-Learning-
dc.subject.keywordAuthorLGBM-
dc.subject.keywordAuthorDNN-
dc.subject.keywordAuthorSilicon Carbide-
dc.subject.keywordAuthorNMOSFET-
dc.subject.keywordAuthorTCAD-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 전기공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jung Sik photo

Kim, Jung Sik
IT공과대학 (전기공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE