Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The study on machine learning approach for optimization of superjunction MOSFET

Full metadata record
DC Field Value Language
dc.contributor.authorLee, G.-
dc.contributor.authorHa, J.-
dc.contributor.authorKim, J.-
dc.date.accessioned2022-12-26T12:01:16Z-
dc.date.available2022-12-26T12:01:16Z-
dc.date.issued2021-10-
dc.identifier.issn1975-8359-
dc.identifier.issn2287-4364-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/5655-
dc.description.abstractIn this work, the the adoption of machine learning for optimization of superjunction MOSFET is investigated. Abundant data (on-resistance(RON), breakdown voltage(BV)) with various process parameters is earned by technology computer-aided design (TCAD) simulation. We also compare the prediction accuracy between eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM). XGBoost shows higher accuracy than LightGBM. The use of machine learning is very effective way to reduce the cost and time of superjunction MOSFET development. Copyright ? The Korean Institute of Electrical Engineers.-
dc.format.extent6-
dc.language한국어-
dc.language.isoKOR-
dc.publisherKorean Institute of Electrical Engineers-
dc.titleThe study on machine learning approach for optimization of superjunction MOSFET-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.5370/KIEE.2021.70.10.1475-
dc.identifier.scopusid2-s2.0-85116966456-
dc.identifier.bibliographicCitationTransactions of the Korean Institute of Electrical Engineers, v.70, no.10, pp 1475 - 1480-
dc.citation.titleTransactions of the Korean Institute of Electrical Engineers-
dc.citation.volume70-
dc.citation.number10-
dc.citation.startPage1475-
dc.citation.endPage1480-
dc.type.docTypeArticle-
dc.identifier.kciidART002762639-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorMachine Learning-
dc.subject.keywordAuthorNumerical simulation-
dc.subject.keywordAuthorSuperjunction MOSFET-
dc.subject.keywordAuthorTCAD simulation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 전기공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jung Sik photo

Kim, Jung Sik
IT공과대학 (전기공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE