Detailed Information

Cited 17 time in webofscience Cited 30 time in scopus
Metadata Downloads

Machine Learning-Based Microclimate Model for Indoor Air Temperature and Relative Humidity Prediction in a Swine Buildingopen access

Authors
Arulmozhi, ElanchezhianBasak, Jayanta KumarSihalath, ThavisackPark, JaesungKim, Hyeon TaeMoon, Byeong Eun
Issue Date
Jan-2021
Publisher
MDPI
Keywords
indoor air temperature; indoor relative humidity; swine building microclimate; ML models; smart farming
Citation
ANIMALS, v.11, no.1
Indexed
SCIE
SCOPUS
Journal Title
ANIMALS
Volume
11
Number
1
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/4308
DOI
10.3390/ani11010222
Abstract
Simple Summary Indoor air temperature (IAT) and indoor relative humidity (IRH) are the prominent microclimatic variables. Among other livestock animals, pigs are more sensitive to environmental equilibrium; a lack of favorable environment in barns affects the productivity parameters such as voluntary feed intake, feed conversion, heat stress, etc. Machine learning (ML) based prediction models are utilized for solving various nonlinear problems in the current decade. Meanwhile, multiple linear regression (MLR), multilayered perceptron (MLP), random forest regression (RFR), decision tree regression (DTR), and support vector regression (SVR) models were utilized for the prediction. Typically, most of the available IAT and IRH models are limited to feed the animal biological data as the input. Since the biological factors of the internal animals are challenging to acquire, this study used accessible factors such as external environmental data to simulate the models. Three different input datasets named S1 (weather station parameters), S2 (weather station parameters and indoor attributes), and S3 (Highly correlated values) were used to assess the models. From the results, RFR models performed better results in both IAT (R-2 = 0.9913; RMSE = 0.476; MAE = 0.3535) and IRH (R-2 = 0.9594; RMSE = 2.429; MAE = 1.47) prediction with S3 input datasets. In addition, it has been proven that selecting the right features from the given input data builds supportive conditions under which the expected results are available. Indoor air temperature (IAT) and indoor relative humidity (IRH) are the prominent microclimatic variables; still, potential contributors that influence the homeostasis of livestock animals reared in closed barns. Further, predicting IAT and IRH encourages farmers to think ahead actively and to prepare the optimum solutions. Therefore, the primary objective of the current literature is to build and investigate extensive performance analysis between popular ML models in practice used for IAT and IRH predictions. Meanwhile, multiple linear regression (MLR), multilayered perceptron (MLP), random forest regression (RFR), decision tree regression (DTR), and support vector regression (SVR) models were utilized for the prediction. This study used accessible factors such as external environmental data to simulate the models. In addition, three different input datasets named S1, S2, and S3 were used to assess the models. From the results, RFR models performed better results in both IAT (R-2 = 0.9913; RMSE = 0.476; MAE = 0.3535) and IRH (R-2 = 0.9594; RMSE = 2.429; MAE = 1.47) prediction among other models particularly with S3 input datasets. In addition, it has been proven that selecting the right features from the given input data builds supportive conditions under which the expected results are available. Overall, the current study demonstrates a better model among other models to predict IAT and IRH of a naturally ventilated swine building containing animals with fewer input attributes.
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 생물산업기계공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyeon Tae photo

Kim, Hyeon Tae
농업생명과학대학 (생물산업기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE