Detailed Information

Cited 19 time in webofscience Cited 24 time in scopus
Metadata Downloads

Synergetic effects of cation (K+) and anion (S2-)-doping on the structural integrity of Li/Mn-rich layered cathode material with considerable cyclability and high-rate capability for Li-ion batteries

Authors
Saroha, RakeshCho, Jung SangAhn, Jou-Hyeon
Issue Date
10-Jan-2021
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Li-rich cathodes; Cation/anion co-doping; Structural integrity; Lithium-ion batteries
Citation
ELECTROCHIMICA ACTA, v.366
Indexed
SCIE
SCOPUS
Journal Title
ELECTROCHIMICA ACTA
Volume
366
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/4235
DOI
10.1016/j.electacta.2020.137471
ISSN
0013-4686
Abstract
Controlling structural deformations and rapid voltage decay during prolonged cycling has been considered the foremost challenge in improving the cycling and rate performance of Li-rich cathode materials for advanced lithium-ion batteries. In this work, we report an effective strategy for delaying structural variations and inhibiting transition metal migration by co-doping with a large sized cation and anion. A Li-rich layered composite cathode, namely Li1.165Mn0.495Ni0.165Co0.165O2 (LMNCO; 0.5Li(2)MnO(3)-0.5LiMn(0.33)Ni(0.33)Co(0.33)O(2)) was prepared as the starting material, followed by synthesis of the optimized K+-doped L1.135K0.03Mn0.495Ni0.165Co0.165O2 (LKMNCO) and K+/S2--doped L1.135K0.03Mn0.495Ni0.165Co0.165O2S0.02 (LKMNCOS) samples via a co-precipitation method. This co-doping strategy retarded structural deformations by significantly suppressing transition metal migration, as evidenced by ex-situ X-ray diffraction analysis at various cycle numbers for the sample cycled at 1.0 C-rate. The K+/S2--doped sample, i.e., LKMNCOS, exhibited exceptional cycling stability and high-rate capability. Owing to the enhanced structural properties, the co-doped sample delivered an initial charge/discharge capacity of 341/295 mAh g(-1) at 0.05 C, with the lowest irreversible capacity loss (ICL) compared to the pristine and K+-doped sample. A discharge capacity of similar to 129 mAh g(-1) was also achieved even after 450 cycles at 1.0 C-rate, with the highest capacity retention ratio (65%) and lowest average capacity decay rate per cycle (similar to 0.07%), suggesting excellent cycling performance. Overall, the results are prospectively beneficial for further development of advanced layered cathodes that undergo layered-to-spinel transformations and demonstrate the efficacy of co-doping for alleviating undesired structural defects. (c) 2020 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ahn, Jou Hyeon photo

Ahn, Jou Hyeon
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE