Connected Fundamental Groups and Homotopy Contacts in Fibered Topological (C, R) Spaceopen access
- Authors
- Bagchi, Susmit
- Issue Date
- Mar-2021
- Publisher
- MDPI
- Keywords
- topological spaces; homotopy; fundamental group; projection; norm
- Citation
- SYMMETRY-BASEL, v.13, no.3
- Indexed
- SCIE
SCOPUS
- Journal Title
- SYMMETRY-BASEL
- Volume
- 13
- Number
- 3
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/4026
- DOI
- 10.3390/sym13030500
- ISSN
- 2073-8994
2073-8994
- Abstract
- The algebraic as well as geometric topological constructions of manifold embeddings and homotopy offer interesting insights about spaces and symmetry. This paper proposes the construction of 2-quasinormed variants of locally dense p-normed 2-spheres within a non-uniformly scalable quasinormed topological (C, R) space. The fibered space is dense and the 2-spheres are equivalent to the category of 3-dimensional manifolds or three-manifolds with simply connected boundary surfaces. However, the disjoint and proper embeddings of covering three-manifolds within the convex subspaces generates separations of p-normed 2-spheres. The 2-quasinormed variants of p-normed 2-spheres are compact and path-connected varieties within the dense space. The path-connection is further extended by introducing the concept of bi-connectedness, preserving Urysohn separation of closed subspaces. The local fundamental groups are constructed from the discrete variety of path-homotopies, which are interior to the respective 2-spheres. The simple connected boundaries of p-normed 2-spheres generate finite and countable sets of homotopy contacts of the fundamental groups. Interestingly, a compact fibre can prepare a homotopy loop in the fundamental group within the fibered topological (C, R) space. It is shown that the holomorphic condition is a requirement in the topological (C, R) space to preserve a convex path-component. However, the topological projections of p-normed 2-spheres on the disjoint holomorphic complex subspaces retain the path-connection property irrespective of the projective points on real subspace. The local fundamental groups of discrete-loop variety support the formation of a homotopically Hausdorff (C, R) space.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 공과대학 > Department of Aerospace and Software Engineering > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.