Detailed Information

Cited 16 time in webofscience Cited 20 time in scopus
Metadata Downloads

Dynamic Transformation of a Ag+ -Coordinated Supramolecular Nanostructure from a 1D Needle to a 1D Helical Tube via a 2D Ribbon Accompanying the Conversion of Complex Structures

Authors
Oh, Jeong SangKim, Ka YoungPark, JaehyeonLee, HyeonjuPark, YounwooCho, JaeheungLee, Shim SungKim, HyungjunJung, Sung HoJung, Jong Hwa
Issue Date
3-Mar-2021
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.143, no.8, pp.3113 - 3123
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume
143
Number
8
Start Page
3113
End Page
3123
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/3976
DOI
10.1021/jacs.0c10678
ISSN
0002-7863
Abstract
We report a unique dynamic morphology transformation of a Ag+-coordinated supramolecular nanostructure accompanying the conversion of complex structures in aqueous solution. In the presence of AgNO3 (1.0 equiv), the achiral bipyridine-based ligand 1G, possessing hydrazine and glycine moieties, preferentially generated a 1D needle-like structure (nanostructure I) based on the 1GAgNO(3) complex (1G:Ag+ = 1:1) as a metastable product. Nanostructure I was then transformed into nanostructure II, which was composed of the 1G(3)Ag(2)(NO3)(2) complex (1G:Ag+ = 3:2) as the thermodynamically stable product. This nanostructure exhibited a 1D helical tubular structure with a uniform diameter via a 2D ribbon as an intermediator, which led to the generation of a circular dichroism (CD) signal with right-handed (P-type) helicity. The observed dynamic transformation was attributed to formation of the thermodynamically favored helical 1G(3)Ag(2)(NO3)(2) complex. In addition, the helical 1G(3)Ag(2)(NO3)(2) complex acted as an initiator in the transformation from the 1D needle-like structure to the 1D helical tube via a 2D ribbon. The enhanced Delta G degrees value of nanostructure II compared to that of nanostructure I confirmed that nanostructure II is thermodynamically stable. More importantly, the transformation of supramolecular nanostructure I to nanostructure II occurred via an "on" pathway, even though the 1GAgNO(3) complex was converted to the 1G(3)Ag(2)(NO3)(2) complex, which did not involve dissociation from nanostructure I into the monomeric 1GAgNO(3) complex species. In the kinetic study, the NO3- anion was found to act as an accelerator for the dynamic transformation from nanostructure I to nanostructure II. This result provides the first example of a dynamic transformation of a 1D needle-like structure into a 1D tubular structure via a 2D ribbon structure, accompanied by the conversion of a complex structure and the generation of a large CD signal for the metallo-supramolecular nanostructure. This study may open up new avenues to the understanding of a dynamic morphology transformation process in biological systems.
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 화학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jung, Sung Ho photo

Jung, Sung Ho
자연과학대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE