Detailed Information

Cited 8 time in webofscience Cited 8 time in scopus
Metadata Downloads

High Electrochemical Performance Silicon Thin-Film Free-Standing Electrodes Based on Buckypaper for Flexible Lithium-Ion Batteriesopen access

Authors
Nyamaa, OyunbayarSeo, Duck-HyeonLee, Jun-SeokJeong, Hyo-MinHuh, Sun-ChulYang, Jeong-HyeonDolgor, ErdenechimegNoh, Jung-Pil
Issue Date
Apr-2021
Publisher
MDPI
Keywords
flexible Li-ion battery; high capacity; oxidized MWCNTs; heated amorphous silicon; freestanding electrode; DC magnetron sputtering
Citation
MATERIALS, v.14, no.8
Indexed
SCIE
SCOPUS
Journal Title
MATERIALS
Volume
14
Number
8
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/3886
DOI
10.3390/ma14082053
ISSN
1996-1944
1996-1944
Abstract
Recently, applications for lithium-ion batteries (LIBs) have expanded to include electric vehicles and electric energy storage systems, extending beyond power sources for portable electronic devices. The power sources of these flexible electronic devices require the creation of thin, light, and flexible power supply devices such as flexile electrolytes/insulators, electrode materials, current collectors, and batteries that play an important role in packaging. Demand will require the progress of modern electrode materials with high capacity, rate capability, cycle stability, electrical conductivity, and mechanical flexibility for the time to come. The integration of high electrical conductivity and flexible buckypaper (oxidized Multi-walled carbon nanotubes (MWCNTs) film) and high theoretical capacity silicon materials are effective for obtaining superior high-energy-density and flexible electrode materials. Therefore, this study focuses on improving the high-capacity, capability-cycling stability of the thin-film Si buckypaper free-standing electrodes for lightweight and flexible energy-supply devices. First, buckypaper (oxidized MWCNTs) was prepared by assembling a free stand-alone electrode, and electrical conductivity tests confirmed that the buckypaper has sufficient electrical conductivity (10(-4)(S m(-1)) in LIBs) to operate simultaneously with a current collector. Subsequently, silicon was deposited on the buckypaper via magnetron sputtering. Next, the thin-film Si buckypaper freestanding electrodes were heat-treated at 600 degrees C in a vacuum, which improved their electrochemical performance significantly. Electrochemical results demonstrated that the electrode capacity can be increased by 27/26 and 95/93 mu Ah in unheated and heated buckypaper current collectors, respectively. The measured discharge/charge capacities of the USi_HBP electrode were 108/106 mu Ah after 100 cycles, corresponding to a Coulombic efficiency of 98.1%, whereas the HSi_HBP electrode indicated a discharge/charge capacity of 193/192 mu Ah at the 100th cycle, corresponding to a capacity retention of 99.5%. In particular, the HSi_HBP electrode can decrease the capacity by less than 1.5% compared with the value of the first cycle after 100 cycles, demonstrating excellent electrochemical stability.
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 기계시스템공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hue, Sun Cheal photo

Hue, Sun Cheal
해양과학대학 (스마트에너지기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE