Detailed Information

Cited 6 time in webofscience Cited 9 time in scopus
Metadata Downloads

Accurate evaluation of hydrogen crossover in water electrolysis systems for wetted membranes

Authors
Kim, SeungHwanNguyen, Bao Tran DuyKo, HansolKim, MijeongKim, KihyunNam, SangYongKim, Jeong F.
Issue Date
26-Apr-2021
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Hydrogen crossover; Water electrolysis; Fuel cells; Ion exchange membranes; Hydrogen safety; Pressure decay method
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.46, no.29, pp.15135 - 15144
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume
46
Number
29
Start Page
15135
End Page
15144
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/3824
DOI
10.1016/j.ijhydene.2021.02.040
ISSN
0360-3199
Abstract
In fuel cell and electrolysis systems, hydrogen crossover is a phenomenon where hydrogen molecules (H-2) permeate through a membrane, lowering the overall process efficiency and generating a potential safety risk. Many works have been reported to mitigate this undesired phenomenon, but it is yet difficult to accurately measure the rate of hydrogen crossover, particularly when the membrane is fully wetted in water. In this work, we investigated the pressure decay method as a simple, convenient, and low-cost method to characterize hydrogen crossover through wetted membranes for water electrolysis systems. Three different ion exchange membranes were analyzed: Nafion 212, Nafion 115, and in-house sulfonated poly(arylene ether sulfone). We rigorously confirmed our method and data by comparing it to the ANSI dataset with the current state-of-the-art equations of state (EOS) to account for the nonideality of high pressure hydrogen systems. The error from the gas non-ideality was less than 0.03%. As expected, the rate of hydrogen crossover showed high dependency on the temperature; more importantly, hydrogen crossover increased significantly when the membrane was fully soaked in water. For dry membranes, the proposed pressure decay method corroborated well with the literature data measured using other known methods. Moreover, for wetted membranes, the obtained data showed high similarity compared to the GC method which is currently the most reliable method in the literature. We attempted to predict the hydrogen permeability of wetted membranes using the solution diffusion model. The model based on the given thermodynamic parameters overestimated the hydrogen permeability, which can be used to estimate the ion channel tortuosity. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Nam, Sang Yong photo

Nam, Sang Yong
나노신소재융합공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE