Detailed Information

Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads

Proteomic Changes during the Dermal Toxicity Induced by Nemopilema nomurai Jellyfish Venom in HaCaT Human Keratinocyteopen access

Authors
Choudhary, InduHwang, DuhyeonChae, JinhoYoon, WondukKang, ChangkeunKim, Euikyung
Issue Date
May-2021
Publisher
MDPI
Keywords
Nemopilema nomurai jellyfish; 2-DE; MALDI-TOF; MS; HaCaT cell; dermal toxicity
Citation
TOXINS, v.13, no.5
Indexed
SCIE
SCOPUS
Journal Title
TOXINS
Volume
13
Number
5
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/3768
DOI
10.3390/toxins13050311
ISSN
2072-6651
2072-6651
Abstract
Jellyfish venom is well known for its local skin toxicities and various lethal accidents. The main symptoms of local jellyfish envenomation include skin lesions, burning, prickling, stinging pain, red, brown, or purplish tracks on the skin, itching, and swelling, leading to dermonecrosis and scar formation. However, the molecular mechanism behind the action of jellyfish venom on human skin cells is rarely understood. In the present study, we have treated the human HaCaT keratinocyte with Nemopilema nomurai jellyfish venom (NnV) to study detailed mechanisms of actions behind the skin symptoms after jellyfish envenomation. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/MS), cellular changes at proteome level were examined. The treatment of NnV resulted in the decrease of HaCaT cell viability in a concentration-dependent manner. Using NnV (at IC50), the proteome level alterations were determined at 12 h and 24 h after the venom treatment. Briefly, 70 protein spots with significant quantitative changes were picked from the gels for MALDI-TOF/MS. In total, 44 differentially abundant proteins were successfully identified, among which 19 proteins were increased, whereas 25 proteins were decreased in the abundance levels comparing with their respective control spots. DAPs involved in cell survival and development (e.g., Plasminogen, Vinculin, EMILIN-1, Basonuclin2, Focal adhesion kinase 1, FAM83B, Peroxisome proliferator-activated receptor-gamma co-activator 1-alpha) decreased their expression, whereas stress or immune response-related proteins (e.g., Toll-like receptor 4, Aminopeptidase N, MKL/Myocardin-like protein 1, hypoxia up-regulated protein 1, Heat shock protein 105 kDa, Ephrin type-A receptor 1, with some protease (or peptidase) enzymes) were up-regulated. In conclusion, the present findings may exhibit some possible key players during skin damage and suggest therapeutic strategies for preventing jellyfish envenomation.
Files in This Item
There are no files associated with this item.
Appears in
Collections
수의과대학 > Department of Veterinary Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Eui Kyung photo

Kim, Eui Kyung
수의과대학 (수의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE