Detailed Information

Cited 88 time in webofscience Cited 127 time in scopus
Metadata Downloads

CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato

Authors
Tran, Mil ThiDoan, Duong Thi HaiKim, JihaeSong, Young JongSung, Yeon WooDas, SwatiKim, Eun-JungSon, Geon HuiKim, Sang HeeVan Vu, TienKim, Jae-Yean
Issue Date
Jun-2021
Publisher
Springer Verlag
Keywords
CRISPR; Cas9; Genome editing; HyPRP1; Multiplexed editing; Precision breeding; Tomato
Citation
Plant Cell Reports, v.40, no.6, pp 999 - 1011
Pages
13
Indexed
SCIE
SCOPUS
Journal Title
Plant Cell Reports
Volume
40
Number
6
Start Page
999
End Page
1011
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/3611
DOI
10.1007/s00299-020-02622-z
ISSN
0721-7714
1432-203X
Abstract
Key message CRISPR/Cas9-based multiplexed editing of SlHyPRP1 resulted in precise deletions of its functional motif(s), thereby resulting in salt stress-tolerant events in cultivated tomato. Crop genetic improvement to address environmental stresses for sustainable food production has been in high demand, especially given the current situation of global climate changes and reduction of the global food production rate/population rate. Recently, the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based targeted mutagenesis has provided a revolutionary approach to crop improvement. The major application of CRISPR/Cas in plant genome editing has been the generation of indel mutations via error-prone nonhomologous end joining (NHEJ) repair of DNA DSBs. In this study, we examined the power of the CRISPR/Cas9-based novel approach in the precise manipulation of protein domains of tomato hybrid proline-rich protein 1 (HyPRP1), which is a negative regulator of salt stress responses. We revealed that the precise elimination of SlHyPRP1 negative-response domain(s) led to high salinity tolerance at the germination and vegetative stages in our experimental conditions. CRISPR/Cas9-based domain editing may be an efficient tool to engineer multidomain proteins of important food crops to cope with global climate changes for sustainable agriculture and future food security.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jae Yean photo

Kim, Jae Yean
대학원 (응용생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE