Detailed Information

Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads

Recovery of thermal transport in atomic-layer-deposition-healed defective graphene

Authors
So, SoonsungKim, Jeong-YunKim, DuckjongLee, Joo-Hyoung
Issue Date
15-Aug-2021
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Graphene; Defect; Thermal conductivity; Molecular dynamics; ALD
Citation
CARBON, v.180, pp.77 - 84
Indexed
SCIE
SCOPUS
Journal Title
CARBON
Volume
180
Start Page
77
End Page
84
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/3377
DOI
10.1016/j.carbon.2021.04.098
ISSN
0008-6223
Abstract
Large-scale graphene samples are mostly grown through chemical processes, which unavoidably introduce structural defects such as vacancies and adatoms that impede thermal transport. Recently, atomic layer deposition (ALD) utilizing metallic elements has proven healing capability of both structural defects and thermal transport in graphene, but the details of recovery mechanism have been elusive. In this study, we carry out molecular dynamics simulations to investigate the Pt-ALD-assisted healing reaction in graphene. Considering single (SV), double vacancies (DV) and C adatoms (C-ad) as representative imperfections, it is revealed that SVs and DVs are healed through direct Pt-filling and C adatoms are removed from graphene surface predominantly via dissociating O-2 molecules due to the catalytic effect of Pt. Moreover, examining thermal conductivity (kappa) shows that removal of C-ad plays a key role in recovering kappa whereas the improvement due to vacancy filling is insignificant. The spectral analysis of the lattice vibrations further demonstrates that the enhanced kappa originates from the enhanced mean free path of the flexural phonon modes in a low frequency range (<20 THz). (C) 2021 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Division of Mechanical and Aerospace Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Duck Jong photo

Kim, Duck Jong
기계항공우주공학부
Read more

Altmetrics

Total Views & Downloads

BROWSE