Assessing the Performance of Deep Learning Algorithms for Short-Term Surface Water Quality Predictionopen access
- Authors
- Choi, Heelak; Suh, Sang-Ik; Kim, Su-Hee; Han, Eun Jin; Ki, Seo Jin
- Issue Date
- Oct-2021
- Publisher
- MDPI
- Keywords
- deep learning; ARIMA; surface water quality; univariate data set; multivariate data set
- Citation
- SUSTAINABILITY, v.13, no.19
- Indexed
- SCIE
SSCI
SCOPUS
- Journal Title
- SUSTAINABILITY
- Volume
- 13
- Number
- 19
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/3175
- DOI
- 10.3390/su131910690
- ISSN
- 2071-1050
2071-1050
- Abstract
- This study aimed to investigate the applicability of deep learning algorithms to (monthly) surface water quality forecasting. A comparison was made between the performance of an autoregressive integrated moving average (ARIMA) model and four deep learning models. All prediction algorithms, except for the ARIMA model working on a single variable, were tested with univariate inputs consisting of one of two dependent variables as well as multivariate inputs containing both dependent and independent variables. We found that deep learning models (6.31-18.78%, in terms of the mean absolute percentage error) showed better performance than the ARIMA model (27.32-404.54%) in univariate data sets, regardless of dependent variables. However, the accuracy of prediction was not improved for all dependent variables in the presence of other associated water quality variables. In addition, changes in the number of input variables, sliding window size (i.e., input and output time steps), and relevant variables (e.g., meteorological and discharge parameters) resulted in wide variation of the predictive accuracy of deep learning models, reaching as high as 377.97%. Therefore, a refined search identifying the optimal values on such influencing factors is recommended to achieve the best performance of any deep learning model in given multivariate data sets.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 건설환경공과대학 > 환경공학과 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.