Cited 32 time in
Y2O3-Based Crossbar Array for Analog and Neuromorphic Computation
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kumar, Sanjay | - |
| dc.contributor.author | Kumbhar, Dhananjay D. D. | - |
| dc.contributor.author | Park, Jun H. H. | - |
| dc.contributor.author | Kamat, Rajanish K. K. | - |
| dc.contributor.author | Dongale, Tukaram D. D. | - |
| dc.contributor.author | Mukherjee, Shaibal | - |
| dc.date.accessioned | 2023-01-13T01:24:01Z | - |
| dc.date.available | 2023-01-13T01:24:01Z | - |
| dc.date.issued | 2023-02 | - |
| dc.identifier.issn | 0018-9383 | - |
| dc.identifier.issn | 1557-9646 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/30094 | - |
| dc.description.abstract | we report an implementation of (8 x 8) Y2O3-based memristive crossbar array (MCA) out of a total dimension of (30 x 25) array fabricated by utilizing a dual ion beam sputtering (DIBS) system. The selected (8 x 8) MCA is further used to electrically write random alphabets and perform synaptic learning characteristics to perform analog and neuromorphic computing applications. The MCA effectively exhibits multiple current levels and mimics var-ious artificial synaptic properties with superior bidirec-tional switching responses. The MCA mimics potentiation, depression, and different Hebbian learning-based spike-time-dependent plasticity rules, suggesting the importance of the Y2O3-based MCA for large-scale neuromorphic and analog computations. This work provides different insights into the design of an artificial synapse by utilizing Y2O3 as a switching oxide in memristors. | - |
| dc.format.extent | 5 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Institute of Electrical and Electronics Engineers | - |
| dc.title | Y2O3-Based Crossbar Array for Analog and Neuromorphic Computation | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1109/TED.2022.3227890 | - |
| dc.identifier.scopusid | 2-s2.0-85146227023 | - |
| dc.identifier.wosid | 000903548400001 | - |
| dc.identifier.bibliographicCitation | IEEE Transactions on Electron Devices, v.70, no.2, pp 1 - 5 | - |
| dc.citation.title | IEEE Transactions on Electron Devices | - |
| dc.citation.volume | 70 | - |
| dc.citation.number | 2 | - |
| dc.citation.startPage | 1 | - |
| dc.citation.endPage | 5 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalResearchArea | Physics | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
| dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
| dc.subject.keywordPlus | SYNAPTIC DEVICE | - |
| dc.subject.keywordPlus | PLASTICITY | - |
| dc.subject.keywordPlus | MEMORY | - |
| dc.subject.keywordAuthor | Synapses | - |
| dc.subject.keywordAuthor | Switches | - |
| dc.subject.keywordAuthor | Neuromorphics | - |
| dc.subject.keywordAuthor | Writing | - |
| dc.subject.keywordAuthor | Memristors | - |
| dc.subject.keywordAuthor | Depression | - |
| dc.subject.keywordAuthor | Voltage | - |
| dc.subject.keywordAuthor | Artificial synapse | - |
| dc.subject.keywordAuthor | crossbar | - |
| dc.subject.keywordAuthor | Y2O3 | - |
| dc.subject.keywordAuthor | neuromorphic computation | - |
| dc.subject.keywordAuthor | spike-time-dependent plasticity (STDP) | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
