Detailed Information

Cited 31 time in webofscience Cited 32 time in scopus
Metadata Downloads

Y2O3-Based Crossbar Array for Analog and Neuromorphic Computation

Full metadata record
DC Field Value Language
dc.contributor.authorKumar, Sanjay-
dc.contributor.authorKumbhar, Dhananjay D. D.-
dc.contributor.authorPark, Jun H. H.-
dc.contributor.authorKamat, Rajanish K. K.-
dc.contributor.authorDongale, Tukaram D. D.-
dc.contributor.authorMukherjee, Shaibal-
dc.date.accessioned2023-01-13T01:24:01Z-
dc.date.available2023-01-13T01:24:01Z-
dc.date.issued2023-02-
dc.identifier.issn0018-9383-
dc.identifier.issn1557-9646-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/30094-
dc.description.abstractwe report an implementation of (8 x 8) Y2O3-based memristive crossbar array (MCA) out of a total dimension of (30 x 25) array fabricated by utilizing a dual ion beam sputtering (DIBS) system. The selected (8 x 8) MCA is further used to electrically write random alphabets and perform synaptic learning characteristics to perform analog and neuromorphic computing applications. The MCA effectively exhibits multiple current levels and mimics var-ious artificial synaptic properties with superior bidirec-tional switching responses. The MCA mimics potentiation, depression, and different Hebbian learning-based spike-time-dependent plasticity rules, suggesting the importance of the Y2O3-based MCA for large-scale neuromorphic and analog computations. This work provides different insights into the design of an artificial synapse by utilizing Y2O3 as a switching oxide in memristors.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleY2O3-Based Crossbar Array for Analog and Neuromorphic Computation-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TED.2022.3227890-
dc.identifier.scopusid2-s2.0-85146227023-
dc.identifier.wosid000903548400001-
dc.identifier.bibliographicCitationIEEE Transactions on Electron Devices, v.70, no.2, pp 1 - 5-
dc.citation.titleIEEE Transactions on Electron Devices-
dc.citation.volume70-
dc.citation.number2-
dc.citation.startPage1-
dc.citation.endPage5-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusSYNAPTIC DEVICE-
dc.subject.keywordPlusPLASTICITY-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordAuthorSynapses-
dc.subject.keywordAuthorSwitches-
dc.subject.keywordAuthorNeuromorphics-
dc.subject.keywordAuthorWriting-
dc.subject.keywordAuthorMemristors-
dc.subject.keywordAuthorDepression-
dc.subject.keywordAuthorVoltage-
dc.subject.keywordAuthorArtificial synapse-
dc.subject.keywordAuthorcrossbar-
dc.subject.keywordAuthorY2O3-
dc.subject.keywordAuthorneuromorphic computation-
dc.subject.keywordAuthorspike-time-dependent plasticity (STDP)-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jun Hong photo

Park, Jun Hong
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE