Detailed Information

Cited 0 time in webofscience Cited 9 time in scopus
Metadata Downloads

Effect of envelope characteristics on the accuracy of discretised greenhouse model in TRNSYSopen access

Authors
Ogunlowo, Q.O.Na, W.H.Rabiu, A.Adesanya, M.A.Akpenpuun, T.D.Kim, H.T.Lee, H.W.
Issue Date
Sep-2022
Publisher
Page Press Publications
Keywords
Building; Discretisation; Energy; Envelope characteristics; Simulation; TRNSYS
Citation
Journal of Agricultural Engineering, v.53, no.3
Indexed
SCIE
SCOPUS
Journal Title
Journal of Agricultural Engineering
Volume
53
Number
3
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/30071
DOI
10.4081/jae.2022.1420
ISSN
1974-7071
2239-6268
Abstract
TRNSYS is a standard tool recently used to model and simulate greenhouse energy demand and utilisation using building energy simulation (BES). Previously, a single thermal point was used for validation, ignoring the distribution of greenhouse climate parameters, especially the temperature. Temperature variation often leads to thermal stratification, prompting researchers to propose volume discretisation in dynamic greenhouse simulations. In this context, the effect of envelope characterisation on the accuracy of the discretised TRNSYS BES model was developed to determine the best BES model under a free-floating regime. The combination of the number of layers [double (D) and single (S)], geometry mode [3D and manual (M)], and layer type [massless (M) and no glazing window (W)], led to the development of five models: D_3D_M, D_3D_W, D_M_M, S_3D_W, and S_M_M. The simulation was performed in a standard radiation mode, and the output parameters were temperature and relative humidity (RH). R2 and the root square mean error (RSME) were used to check the fitness and degree of deviation, respectively, to validate the models. Analysis of variance (ANOVA) was employed to investigate the significant differences among the models, whereas contour plots were used to compare the distribution pattern between the significant models and experimental data. Validation of the models showed that the obtained R2 values ranged from 0.86 to 0.95, and the RSME values for the temperature were between 2.64°C and 3.91°C. These values were 0.91-0.93 and 19.72%-30.32% for RH. The ANOVA (P<0.05) result exhibited significant differences between the S-scenario models and experi-mental central points in temperature and RH. However, the D- and S-layer scenarios with a 3D geometry and massless layer showed similar distribution with their corresponding experimental green-houses. Hence, 3D_M was regarded as the best combination in the discretised BES model. © the Author(s), 2022.
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 생물산업기계공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyeon Tae photo

Kim, Hyeon Tae
농업생명과학대학 (생물산업기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE