Detailed Information

Cited 23 time in webofscience Cited 26 time in scopus
Metadata Downloads

Opportunities and challenges of machine learning in bioprocesses: Categorization from different perspectives and future directionopen access

Authors
Lim, S.J.Son, M.Ki, S.J.Suh, S.-I.Chung, J.
Issue Date
Feb-2023
Publisher
Elsevier BV
Keywords
Bioprocess; Deep learning; Engineered system; Machine learning; Natural system
Citation
Bioresource Technology, v.370
Indexed
SCIE
SCOPUS
Journal Title
Bioresource Technology
Volume
370
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/30049
DOI
10.1016/j.biortech.2022.128518
ISSN
0960-8524
1873-2976
Abstract
Recent advances in machine learning (ML) have revolutionized an extensive range of research and industry fields by successfully addressing intricate problems that cannot be resolved with conventional approaches. However, low interpretability and incompatibility make it challenging to apply ML to complicated bioprocesses, which rely on the delicate metabolic interplay among living cells. This overview attempts to delineate ML applications to bioprocess from different perspectives, and their inherent limitations (i.e., uncertainties in prediction) were then discussed with unique attempts to supplement the ML models. A clear classification can be made depending on the purpose of the ML (supervised vs unsupervised) per application, as well as on their system boundaries (engineered vs natural). Although a limited number of hybrid approaches with meaningful outcomes (e.g., improved accuracy) are available, there is still a need to further enhance the interpretability, compatibility, and user-friendliness of ML models. © 2022 The Author(s)
Files in This Item
There are no files associated with this item.
Appears in
Collections
건설환경공과대학 > 환경공학과 > Journal Articles
학과간협동과정 > 에너지시스템공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ki, Seo Jin photo

Ki, Seo Jin
건설환경공과대학 (환경공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE