Detailed Information

Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads

Optimizing the Experimental Method for Stomata-Profiling Automation of Soybean Leaves Based on Deep Learningopen access

Authors
Sultana, Syada NizerPark, HalimChoi, Sung HoonJo, HyunSong, Jong TaeLee, Jeong-DongKang, Yang Jae
Issue Date
Dec-2021
Publisher
MDPI
Keywords
soybean; stomatal image; deep learning; YOLO
Citation
PLANTS-BASEL, v.10, no.12
Indexed
SCIE
SCOPUS
Journal Title
PLANTS-BASEL
Volume
10
Number
12
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/2893
DOI
10.3390/plants10122714
ISSN
2223-7747
Abstract
Stomatal observation and automatic stomatal detection are useful analyses of stomata for taxonomic, biological, physiological, and eco-physiological studies. We present a new clearing method for improved microscopic imaging of stomata in soybean followed by automated stomatal detection by deep learning. We tested eight clearing agent formulations based upon different ethanol and sodium hypochlorite (NaOCl) concentrations in order to improve the transparency in leaves. An optimal formulation-a 1:1 (v/v) mixture of 95% ethanol and NaOCl (6-14%)-produced better quality images of soybean stomata. Additionally, we evaluated fixatives and dehydrating agents and selected absolute ethanol for both fixation and dehydration. This is a good substitute for formaldehyde, which is more toxic to handle. Using imaging data from this clearing method, we developed an automatic stomatal detector using deep learning and improved a deep-learning algorithm that automatically analyzes stomata through an object detection model using YOLO. The YOLO deep-learning model successfully recognized stomata with high mAP (~0.99). A web-based interface is provided to apply the model of stomatal detection for any soybean data that makes use of the new clearing protocol.
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > Division of Life Sciences > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Yang Jae photo

Kang, Yang Jae
자연과학대학 (생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE