Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

RVM을 이용한 음성인식기의 구현Implementation of Speech Recognizer using Relevance Vector Machine

Other Titles
Implementation of Speech Recognizer using Relevance Vector Machine
Authors
김창근고시영이광석허강인
Issue Date
2007
Publisher
한국정보통신학회
Citation
한국정보통신학회논문지, v.11, no.8, pp 1596 - 1603
Pages
8
Indexed
KCI
Journal Title
한국정보통신학회논문지
Volume
11
Number
8
Start Page
1596
End Page
1603
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/28513
ISSN
2234-4772
2288-4165
Abstract
본 논문에서는 음성인식 시스템을 구현함에 있어 중요한 특징 파라미터와 학습, 인식 알고리즘의 선택을 위한 제안을 하기 위하여 각각 세 가지의 방법을 조합하여 인식 실험을 수행하고 검토하였다. 두 종류의 실험을 통하여 하드웨어 장치로 구현할 경우 보다 효과적인 음성인식 시스템을 제안한다. 첫 번째로는 특징 파라미터의 성능을 평가하기 위하여 기존의 MFCC와 MFCC를 PCA와 ICA를 이용하여 특징 공간을 변화시킨 새로운 특징파라미터를 제안하여 총 3종류의 특징파라미터에 대한 인식 실험을 수행하였으며, 두 번째로는 학습데이터 수에 따른 HMM, SVM, RVM의 인식 성능을 실험하였다. 이상의 실험에 의하여 ICA에 의한 특징 파라미터가 특징 공간상에서의 높은 선형 분별성에 의해 MFCC와 비교하여 평균 1.5%의 성능향상을 확인할 수 있었으며 학습데이터의 감소에 따른 인식실험에서는 HMM과 비교하여 RVM에서 최고 3.25%의 성능향상을 확인하였다. 이에 근거하여 TI사의 DSP(TMS320C32)를 사용하여 음성인식기를 구현하여 실시간으로 실험하여 시뮬레이션과 비교하였다. 이와 같은 결과로서 본 논문에서 제안하는 음성인식시스템을 위한 효과적인 방법은 ICA를 이용한 특징 파라미터를 추출하고 RVM을 이용하여 인식을 수행하는 것이라 판단한다.
Files in This Item
There are no files associated with this item.
Appears in
Collections
융합기술공과대학 > Division of Converged Electronic Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE