Changes in aquaporins expression due to acute water restriction in naturally aging mice
- Authors
- Kim, So-Jeong; Baek, Kyung-Wan; Jung, Youn-Kwan; Kim, Ji-Seok; Kim, Bo-Gyu; Yu, Hak Sun; Park, Jin Sung; Yoo, Jun-Il
- Issue Date
- Feb-2023
- Publisher
- Servicio de Publicaciones de la Universidad De Navarra
- Keywords
- Aquaporin 1; Aging; Muscular atrophy; Dehydration; Sarcopenia
- Citation
- Journal of Physiology and Biochemistry, v.79, no.1, pp 71 - 81
- Pages
- 11
- Indexed
- SCIE
SCOPUS
- Journal Title
- Journal of Physiology and Biochemistry
- Volume
- 79
- Number
- 1
- Start Page
- 71
- End Page
- 81
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/2752
- DOI
- 10.1007/s13105-022-00921-5
- ISSN
- 1138-7548
1877-8755
- Abstract
- Aquaporins (AQPs) are water channels in the cell membrane that regulate osmosis in response to rapid changes in intracellular and extracellular fluid concentration caused by extrinsic factors. While there are so many studies on the association of AQPs with muscular atrophy, sarcopenia, and Duchenne muscular dystrophy (DMD), the expression of AQP has not been verified in naturally aging mice or humans. Notably, due to the characteristics of AQPs, the difference in function cannot be evaluated without extrinsic factors such as acute water restriction. The purpose of this study was to investigate the changes in AQPs expression and function due to natural aging under acute water restriction conditions in aging mice. The expression of AQP4 was shown to decrease with aging similar to previous studies. However, for the first time, this study results confirmed that AQP1 expression increased in aging mice. In addition, the expression of Aqp1 decreased in the acute water restricted group compared to the control group after acute water restriction in aging mice. These results suggest that although the expression of AQP1 increases with aging, its function is reduced. We also confirmed that overexpression of Aqp1 can inhibit myotube differentiation and that knockdown can promote myotube differentiation through in vitro experiments. In conclusion, based on our results, we suggest that the AQP1 is an important factor in sarcopenia caused by natural aging accompanied by chronic dehydration.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 사범대학 > Physical Education > Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.