Characterization of KRC-108 as a TrkA Kinase Inhibitor with Anti-Tumor Effectsopen access
- Authors
- Lee, Hyo Jeong; Moon, Yeongyu; Choi, Jungil; Heo, Jeong Doo; Kim, Sekwang; Nallapaneni, Hari Krishna; Chin, Young-Won; Lee, Jongkook; Han, Sun-Young
- Issue Date
- Jul-2022
- Publisher
- KOREAN SOC APPLIED PHARMACOLOGY
- Keywords
- Tropomyosin receptor kinase A; Neurotrophic receptor kinase 1 fusion; KRC-108; Colon cancer
- Citation
- BIOMOLECULES & THERAPEUTICS, v.30, no.4, pp 360 - 367
- Pages
- 8
- Indexed
- SCIE
SCOPUS
KCI
- Journal Title
- BIOMOLECULES & THERAPEUTICS
- Volume
- 30
- Number
- 4
- Start Page
- 360
- End Page
- 367
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/2751
- DOI
- 10.4062/biomolther.2021.195
- ISSN
- 1976-9148
2005-4483
- Abstract
- Tropomyosin receptor kinase A (TrkA) protein is a receptor tyrosine kinase encoded by the NTRK1 gene. TrkA signaling mediates the proliferation, differentiation, and survival of neurons and other cells following stimulation by its ligand, the nerve growth factor. Chromosomal rearrangements of the NTRK1 gene result in the generation of TrkA fusion protein, which is known to cause deregulation of TrkA signaling. Targeting TrkA activity represents a promising strategy for the treatment of cancers that harbor the TrkA fusion protein. In this study, we evaluated the TrkA-inhibitory activity of the benzoxazole compound KRC-108. KRC-108 inhibited TrkA activity in an in vitro kinase assay, and suppressed the growth of KM12C colon cancer cells harboring an NTRK1 gene fusion. KRC-108 treatment induced cell cycle arrest, apoptotic cell death, and autophagy. KRC-108 suppressed the phosphorylation of downstream signaling molecules of TrkA, including Akt, phospholipase C gamma, and ERK1/2. Furthermore, KRC-108 exhibited antitumor activity in vivo in a KM12C cell xenograft model. These results indicate that KRC-108 may be a promising therapeutic agent for Trk fusion-positive cancers.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 약학대학 > 약학과 > Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.