Detailed Information

Cited 143 time in webofscience Cited 151 time in scopus
Metadata Downloads

Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis

Authors
Kim, Jae-KwangChoi, Jae-WonChauhan, Ghanshyam S.Ahn, Jou-HyeonHwang, Gil-ChanChoi, Jin-BeomAhn, Hyo-Jun
Issue Date
30-Nov-2008
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
cathode material; lithium iron phosphate; sol-gel method; carbon coating; electrochemical performance
Citation
ELECTROCHIMICA ACTA, v.53, no.28, pp 8258 - 8264
Pages
7
Indexed
SCIE
SCOPUS
Journal Title
ELECTROCHIMICA ACTA
Volume
53
Number
28
Start Page
8258
End Page
8264
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/27211
DOI
10.1016/j.electacta.2008.06.049
ISSN
0013-4686
1873-3859
Abstract
The porous phase pure lithium iron phosphate (LiFePO4/C) composite particles with a few nanometers thick layer of carbon were synthesized by sol-gel method. The in situ coating of carbon on the LiFePO4 particles was achieved by the pyrolysis of carbon source during the thermal treatment. The synthetic conditions were observed to affect physical, morphological and electrochemical properties of the composites. The composite synthesized via a single-step thermal treatment at 700 degrees C in the presence of a mixture of citric acid and sucrose possesses a large surface area and porous structure. The structure of the residual carbon coated in this sample is observed to be graphene-rich with the lowest D/G (disordered/graphene) ratio in the Raman spectra. When the three LiFePO4/C composites were evaluated as cathode materials in lithium cells at room temperature, the composite prepared in the presence of sucrose as an additional carbon source showed the highest electrochemical performance exhibiting high discharge capacities of 153 (corresponding to 90% of the theoretical capacity), 120, 112. and 94 mAh/g at 0.1. 1, 3, and 5 C-rates, respectively. (c) 2008 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ahn, Hyo Jun photo

Ahn, Hyo Jun
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE