Cited 105 time in
Proteome analysis of soybean roots subjected to short-term drought stress
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Alam, Iftekhar | - |
| dc.contributor.author | Sharmin, Shamima Akhtar | - |
| dc.contributor.author | Kim, Kyung-Hee | - |
| dc.contributor.author | Yang, Jae Kyung | - |
| dc.contributor.author | Choi, Myung Suk | - |
| dc.contributor.author | Lee, Byung-Hyun | - |
| dc.date.accessioned | 2022-12-27T04:08:26Z | - |
| dc.date.available | 2022-12-27T04:08:26Z | - |
| dc.date.issued | 2010-08 | - |
| dc.identifier.issn | 0032-079X | - |
| dc.identifier.issn | 1573-5036 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/25022 | - |
| dc.description.abstract | Drought is one of the most important constraints on the growth and productivity of many crops, including soybeans. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we carried out a proteome analysis in combination with physiological analyses of soybean roots subjected to severe but recoverable drought stress at the seedling stage. Drought stress resulted in the increased accumulation of reactive oxygen species and subsequent lipid peroxidation. The proline content increased in drought-stressed plants and then decreased during the period of recovery. The high-resolution proteome map demonstrated significant variations in about 45 protein spots detected on Comassie briliant blue-stained 2-DE gels. Of these, 28 proteins were identified by mass spectrometry; the levels of 5 protein spots were increased, 21 were decreased and 2 spots were newly detected under drought condition. When the stress was terminated by watering the plants for 4 days, in most cases, the protein levels tended towards the control level. The proteins identified in this study are involved in a variety of cellular functions, including carbohydrate and nitrogen metabolism, cell wall modification, signal transduction, cell defense and programmed cell death, and they contribute to the molecular mechanism of drought tolerance in soybean plants. Analysis of protein expression patterns revealed that proteins associated with osmotic adjustment, defense signaling and programmed cell death play important roles for soybean plant drought adaptation. The identification of these proteins provides new insight that may lead to a better understanding of the molecular basis of the drought stress responses. | - |
| dc.format.extent | 15 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | SPRINGER | - |
| dc.title | Proteome analysis of soybean roots subjected to short-term drought stress | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1007/s11104-010-0365-7 | - |
| dc.identifier.scopusid | 2-s2.0-77954690166 | - |
| dc.identifier.wosid | 000280089400039 | - |
| dc.identifier.bibliographicCitation | PLANT AND SOIL, v.333, no.1-2, pp 491 - 505 | - |
| dc.citation.title | PLANT AND SOIL | - |
| dc.citation.volume | 333 | - |
| dc.citation.number | 1-2 | - |
| dc.citation.startPage | 491 | - |
| dc.citation.endPage | 505 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | sci | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Agriculture | - |
| dc.relation.journalResearchArea | Plant Sciences | - |
| dc.relation.journalWebOfScienceCategory | Agronomy | - |
| dc.relation.journalWebOfScienceCategory | Plant Sciences | - |
| dc.relation.journalWebOfScienceCategory | Soil Science | - |
| dc.subject.keywordPlus | CELL-WALL EXTENSIBILITY | - |
| dc.subject.keywordPlus | INITIATION-FACTOR 5A | - |
| dc.subject.keywordPlus | ISOFLAVONE REDUCTASE | - |
| dc.subject.keywordPlus | OXIDATIVE STRESS | - |
| dc.subject.keywordPlus | WATER DEFICITS | - |
| dc.subject.keywordPlus | ABSCISIC-ACID | - |
| dc.subject.keywordPlus | RICE ROOTS | - |
| dc.subject.keywordPlus | ARABIDOPSIS | - |
| dc.subject.keywordPlus | TOLERANCE | - |
| dc.subject.keywordPlus | SEEDLINGS | - |
| dc.subject.keywordAuthor | Abiotic stress | - |
| dc.subject.keywordAuthor | Drought | - |
| dc.subject.keywordAuthor | Programmed cell death | - |
| dc.subject.keywordAuthor | Proteome | - |
| dc.subject.keywordAuthor | Soybean | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
