Oxidized NADH Oxidase Inhibits Activity of an ATP/NAD Kinase from a Thermophilic Archaeon
- Authors
- Jia, Baolei; Lee, Sangmin; Pham, Bang Phuong; Liu, Jinliang; Pan, Hongyu; Zhang, Shihong; Cheong, Gang-Won
- Issue Date
- Nov-2010
- Publisher
- SPRINGER
- Keywords
- NADH oxidase; ATP/NAD kinase; Oxidative stress; Conformational change; Thermophilic archaeon
- Citation
- PROTEIN JOURNAL, v.29, no.8, pp 609 - 616
- Pages
- 8
- Indexed
- SCI
SCIE
SCOPUS
- Journal Title
- PROTEIN JOURNAL
- Volume
- 29
- Number
- 8
- Start Page
- 609
- End Page
- 616
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/24891
- DOI
- 10.1007/s10930-010-9284-y
- ISSN
- 1572-3887
1573-4943
- Abstract
- NADH oxidases (NOXs) are important enzymes in detoxifying oxidative stress and regenerating oxidized pyridine nucleotides. In the present study, a NOX from Thermococcus kodakarensis KOD1 (NOXtk) was recombinantly expressed in Escherichia coli and purified to homogeneity. NOXtk displayed NADH oxidase activity that was inhibited by oxidization. Under physiological conditions, unoxidized and oxidized NOXtk formed dimers and hexamers, respectively. Mutating the single cysteine residue Cys45 to alanine (NOXtkC45A) decreased NADH oxidase activity without affecting dimerization or hexamerization, suggesting that oligomerization does not occur through disulfide bond formation. Pull-down assay results indicated that an ATP/NAD kinase from T. kodakarensis KOD1 (ANKtk) binds to NOXtk. Use of several assays revealed that ANKtk can only bind to oxidized hexameric NOXtk, through which it inhibits ANKtk activity. Because ANKtk converts NADH to NADPH (an important factor in oxidative stress protection), a model based on in vitro result was proposed in which NOXtk hexamerization under oxic conditions inhibits both NOXtk and ANKtk activities, thereby sensitizing cells to oxidative stress-induced death.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - ETC > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.