Thermally stable organic bulk heterojunction photovoltaic cells incorporating an amorphous fullerene derivative as an electron acceptor
- Authors
- Kim, Seul-Ong; Chung, Dae Sung; Cha, Hyojung; Jang, Jae Wan; Kim, Yun-Hi; Kang, Jae-Wook; Jeong, Yong-Soo; Park, Chan Eon; Kwon, Soon-Ki
- Issue Date
- Feb-2011
- Publisher
- Elsevier BV
- Keywords
- Photovoltaics; Electron acceptor; PCBM; Thermal annealing; Organic solar cell
- Citation
- Solar Energy Materials and Solar Cells, v.95, no.2, pp 432 - 439
- Pages
- 8
- Indexed
- SCI
SCIE
SCOPUS
- Journal Title
- Solar Energy Materials and Solar Cells
- Volume
- 95
- Number
- 2
- Start Page
- 432
- End Page
- 439
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/23859
- DOI
- 10.1016/j.solmat.2010.08.009
- ISSN
- 0927-0248
1879-3398
- Abstract
- A highly soluble amorphous fullerene derivative substituted with dihexylfluorene (DHFCBM) was synthesized and used as an electron acceptor material for P3HT-based bulk heterojunction solar cells. By fitting the experimental J-V curves with space charge limited current equation, the electron mobility of DHFCBM was determined to be 4 x 10(-4) cm(2)/Vs, possibly leading to balanced charge transport with P3HT. From structural and morphological analysis using X-ray diffraction, UV-vis absorption, and atomic force microscopy, we found that the amorphous nature of DHFCBM stabilized the nanomorphology of P3HT:DHFCBM blend films under high temperature annealing. By optimizing blend ratios and annealing conditions, P3HT:DHFCBM-based solar cells yielded power conversion efficiencies in excess of 3%. In addition, the fabricated cells maintained their initial performances even after high temperature annealing for long times, as predicted from the stable nanomorphology. We believe that the use of thermally stable amorphous fullerene as an electron acceptor can be a promising strategy for commercialization of organic solar cells. (C) 2010 Elsevier B.V. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 공과대학 > School of Materials Science&Engineering > Journal Articles
- 자연과학대학 > 화학과 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.