Detailed Information

Cited 31 time in webofscience Cited 34 time in scopus
Metadata Downloads

TMEM14A inhibits N-(4-hydroxyphenyl)retinamide-induced apoptosis through the stabilization of mitochondrial membrane potential

Authors
Woo, Im SunJin, HanaKang, Eun SilKim, Hye JungLee, Jae HeunChang, Ki ChurlPark, Jae-YongChoi, Wan SungSeo, Han Geuk
Issue Date
28-Oct-2011
Publisher
ELSEVIER IRELAND LTD
Keywords
Apoptosis; TMEM14A; Glioblastoma; Mitochondria membrane potential
Citation
CANCER LETTERS, v.309, no.2, pp 190 - 198
Pages
9
Indexed
SCI
SCIE
SCOPUS
Journal Title
CANCER LETTERS
Volume
309
Number
2
Start Page
190
End Page
198
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/23512
DOI
10.1016/j.canlet.2011.05.031
ISSN
0304-3835
1872-7980
Abstract
Apoptosis is a highly conserved genetic process leading to death in mammalian cells. A critical step in apoptosis is mitochondrial membrane permeabilization, which results in the release of proteins critical to downstream events. Transmembrane protein 14A (TMEM14A) was identified as a novel suppressor of Bax using yeast-based functional screening. TMEM14A is a novel mitochondria-associated membrane protein containing a putative transmembrane domain. Over-expression of TMEM14A in U87MG cells inhibited N-(4-hydroxyphenyl)retinamide (4-HPR)-induced apoptosis. TMEM14A prevented 4-HPR-induced loss of mitochondrial membrane potential (MMP), the release of cytochrome c, and the activation of caspase-3, but not the generation of reactive oxygen species, suggesting that TMEM14A regulates mitochondrial membrane potential in a ROS-independent manner. As expected, cyclosporin A, an inhibitor of membrane potential transition, inhibited 4-HPR-induced loss of MMP and apoptosis in U87MG cells, indicating that loss of MMP plays a pivotal role in 4-HPR-induced apoptosis. Suppression of TMEM14A expression using shRNA significantly increased apoptosis and MMP loss in untreated and 4-HPR-treated cells. These findings show for the first time that TMEM14A inhibits apoptosis by blocking the mitochondrial permeability transition and stabilizing mitochondrial membrane potential. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hye Jung photo

Kim, Hye Jung
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE