Langmuir-Maxwell and Langmuir-Smoluchowski boundary conditions for thermal gas flow simulations in hypersonic aerodynamicsopen access
- Authors
- Le, Nam T. P.; White, Craig; Reese, Jason M.; Myong, Rho S.
- Issue Date
- Sep-2012
- Publisher
- PERGAMON-ELSEVIER SCIENCE LTD
- Keywords
- Langmuir-Maxwell; Langmuir-Smoluchowski; New boundary conditions; Adsorption; Hypersonics; Simulation results
- Citation
- INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.55, no.19-20, pp 5032 - 5043
- Pages
- 12
- Indexed
- SCI
SCIE
SCOPUS
- Journal Title
- INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
- Volume
- 55
- Number
- 19-20
- Start Page
- 5032
- End Page
- 5043
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/22058
- DOI
- 10.1016/j.ijheatmasstransfer.2012.04.050
- ISSN
- 0017-9310
1879-2189
- Abstract
- The simulation of nonequilibrium thermal gas flow is important for the aerothermodynamic design of re-entry and other high-altitude vehicles. In computational fluid dynamics, the accuracy of the solution to the Navier-Stokes-Fourier (N-S-F) equations depends on the accuracy of the surface boundary conditions. We propose new boundary conditions (called the Langmuir-Maxwell and the Langmuir-Smoluchowski conditions), for use with the N-S-F equations, which combine the Langmuir surface adsorption isotherm with the Maxwell/Smoluchowski slip/jump conditions in order to capture some of the physical processes involved in gas flow over a surface. These new conditions are validated for flat plate flow, circular cylinder in cross-flow, and the flow over a sharp wedge for Mach numbers ranging from 6 to 24, and for argon and nitrogen as the working gases. Our simulation results show that the new boundary conditions give better predictions for the surface pressures, compared with published experimental and DSMC data. (C) 2012 Elsevier Ltd. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 공학계열 > 기계항공우주공학부 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.