Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment
- Authors
- Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; Delaune, Ronald D.; Seo, Dong-Cheol
- Issue Date
- 19-Sep-2015
- Publisher
- TAYLOR & FRANCIS INC
- Keywords
- Biochar; chicken bone; competitive adsorption; Freundlich isotherm; Langmuir isotherm; single-metal; ternary-metal; three-dimensional simulation
- Citation
- JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, v.50, no.11, pp 1194 - 1204
- Pages
- 11
- Indexed
- SCI
SCIE
SCOPUS
- Journal Title
- JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING
- Volume
- 50
- Number
- 11
- Start Page
- 1194
- End Page
- 1204
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/17016
- DOI
- 10.1080/10934529.2015.1047680
- ISSN
- 1093-4529
1532-4117
- Abstract
- The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130mg g(-1)) > Cd (109mg g(-1)) > Zn (93mg g(-1)) in the single-metal adsorption isotherm and Cu (108mg g(-1)) >> Cd (54mg g(-1)) >= Zn (44mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210mg g(-1)) > Cd (192mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - ETC > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.