Detailed Information

Cited 52 time in webofscience Cited 56 time in scopus
Metadata Downloads

Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils

Authors
Ali, Muhammad AslamKim, P. J.Inubushi, K.
Issue Date
1-Oct-2015
Publisher
ELSEVIER
Keywords
Azolla-cyanobacteria; Biochar; Phosphogypsum; Silicate slag; CH4; N2O; GWPs; Paddy soils
Citation
SCIENCE OF THE TOTAL ENVIRONMENT, v.529, pp 140 - 148
Pages
9
Indexed
SCI
SCIE
SCOPUS
Journal Title
SCIENCE OF THE TOTAL ENVIRONMENT
Volume
529
Start Page
140
End Page
148
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/16974
DOI
10.1016/j.scitotenv.2015.04.090
ISSN
0048-9697
1879-1026
Abstract
Effects of different soil amendments were investigated on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK + fly ash, NPK + silicate slag, NPK + phosphogypsum(PG), NPK + blast furnace slag (BFS), NPK + revolving furnace slag (RFS), NPK + silicate slag (50%) + RFS (50%), NPK + biochar, NPK + biochar + Azolla-cyanobacteria, NPK + silicate slag + Azolla-cyanobacteria, NPK + phosphogypsum (PG) + Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH4 emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phosphogypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N2O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH4 emissions were significantly increased by 9.5-14.0% with biochar amendments, however, global warming potentials were decreased by 8.0-12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0-30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43-50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries. (C) 2015 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Pil Joo photo

Kim, Pil Joo
대학원 (응용생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE