Detailed Information

Cited 71 time in webofscience Cited 78 time in scopus
Metadata Downloads

Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques

Full metadata record
DC Field Value Language
dc.contributor.authorPhuong Nguyen-
dc.contributor.authorKang, Myeongsu-
dc.contributor.authorKim, Jong-Myon-
dc.contributor.authorAhn, Byung-Hyun-
dc.contributor.authorHa, Jeong-Min-
dc.contributor.authorChoi, Byeong-Keun-
dc.date.accessioned2022-12-26T21:24:27Z-
dc.date.available2022-12-26T21:24:27Z-
dc.date.issued2015-12-01-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/16863-
dc.description.abstractThis study presents a robust condition monitoring methodology for rolling element bearings that employs a novel empirical mode decomposition (EMD)-based method to eliminate high-level noise from an acoustic emission (AE) signal and a discrete wavelet packet transform (DWPT)-based envelope analysis technique to effectively search for symptoms of defective bearings. First, the proposed EMD-based de-noising scheme enhances the signal-to-noise ratio by using a Naive Bayes classifier that partitions intrinsic mode functions (IMFs) into noise-dominant and noise-free categories, employing a soft-thresholding-based noise reduction technique for the noise-dominant IMFs, finally obtaining a de-noised acoustic emission (AE) signal via the reconstruction process using both de-noised IMFs and noise-free IMFs. The de-noised AE signal is then decomposed into a set of uniformly spaced sub-bands using three-level DWPT, and the most informative sub-band is determined for early detection of bearing failures. The performance of the proposed condition monitoring scheme is compared with the performance of conventional methods in terms of mean-peak ratio (MPR), which is a metric used to evaluate the degree of defectiveness of the bearings. The experimental results show that the proposed method outperforms the conventional schemes by achieving up to 23.48% higher MPR values, even in a very noisy environment. (C) 2015 Elsevier Ltd. All rights reserved.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleRobust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.eswa.2015.07.064-
dc.identifier.scopusid2-s2.0-84940461179-
dc.identifier.wosid000361923100055-
dc.identifier.bibliographicCitationEXPERT SYSTEMS WITH APPLICATIONS, v.42, no.22, pp 9024 - 9032-
dc.citation.titleEXPERT SYSTEMS WITH APPLICATIONS-
dc.citation.volume42-
dc.citation.number22-
dc.citation.startPage9024-
dc.citation.endPage9032-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.subject.keywordPlusFAULT-DIAGNOSIS-
dc.subject.keywordPlusACOUSTIC-EMISSION-
dc.subject.keywordAuthorAcoustic emission-
dc.subject.keywordAuthorCondition monitoring-
dc.subject.keywordAuthorDiscrete wavelet packet transform-
dc.subject.keywordAuthorEmpirical mode decomposition-
dc.subject.keywordAuthorEnvelope analysis-
dc.subject.keywordAuthorRolling element bearings-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Byeong Keun photo

Choi, Byeong Keun
해양과학대학 (스마트에너지기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE