Cited 81 time in
Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kuppusamy, Saranya | - |
| dc.contributor.author | Thavamani, Palanisami | - |
| dc.contributor.author | Megharaj, Mallavarapu | - |
| dc.contributor.author | Venkateswarlu, Kadiyala | - |
| dc.contributor.author | Lee, Yong Bok | - |
| dc.contributor.author | Naidu, Ravi | - |
| dc.date.accessioned | 2022-12-26T20:19:37Z | - |
| dc.date.available | 2022-12-26T20:19:37Z | - |
| dc.date.issued | 2016-03 | - |
| dc.identifier.issn | 0957-5820 | - |
| dc.identifier.issn | 1744-3598 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/15632 | - |
| dc.description.abstract | The present study describes for the first time the utilization of dried twigs of Melaleuca diosmifolia, fallen off from the plant, to detoxify and remove hexavalent chromium or Cr(VI) from aqueous systems. Initial characterization by gas chromatography revealed that the selected biomaterial is one of the natural sources of eucalyptol. It constituted high concentrations of reducing compounds (iron, phenols and flavonoids). Batch studies revealed that the biosorbent (5 g L-1) was able to remove 97-99.9% of 250 mg L-1 Cr(VI) at wide-ranging pH (2-10) and temperature (24-48 degrees C). Adsorption kinetics was well described using the pseudo second -order kinetic model, while the equilibrium adsorption data were interpreted in terms of the Langmuir isotherm model. The monolayer adsorption capacity was 62.5 mg g(-1). Both inductively coupled plasma optical emission spectrometry and liquid chromatography analyses of the aqueous and solid phases revealed that the mechanism of Cr(VI) removal was `adsorption-coupled reduction'. Scanning electron microscope, infrared spectroscopy and X-ray diffraction analyses of the biosorbent before and after adsorption also confirmed that both adsorption and reduction of Cr(VI) to Cr(III) followed by complexation onto functional groups of the active surface contributed to the removal of Cr(VI) from aqueous solution. The selected biomaterial effectively (99.9%) removed Cr(VI) in lake and sea water samples, highlighting its potential for remediating Cr(VI) in real environmental conditions. (C) 2016 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. | - |
| dc.format.extent | 10 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | ELSEVIER | - |
| dc.title | Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1016/j.psep.2016.01.009 | - |
| dc.identifier.scopusid | 2-s2.0-84960437193 | - |
| dc.identifier.wosid | 000373538700016 | - |
| dc.identifier.bibliographicCitation | PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, v.100, pp 173 - 182 | - |
| dc.citation.title | PROCESS SAFETY AND ENVIRONMENTAL PROTECTION | - |
| dc.citation.volume | 100 | - |
| dc.citation.startPage | 173 | - |
| dc.citation.endPage | 182 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
| dc.subject.keywordPlus | AQUEOUS-SOLUTIONS | - |
| dc.subject.keywordPlus | WASTE-WATER | - |
| dc.subject.keywordPlus | CR(VI) | - |
| dc.subject.keywordPlus | ADSORPTION | - |
| dc.subject.keywordPlus | BIOSORPTION | - |
| dc.subject.keywordPlus | PEEL | - |
| dc.subject.keywordPlus | EQUILIBRIUM | - |
| dc.subject.keywordPlus | INDUSTRIAL | - |
| dc.subject.keywordPlus | EVIDENCES | - |
| dc.subject.keywordPlus | BIOMASS | - |
| dc.subject.keywordAuthor | Melaleuca diosmifolia | - |
| dc.subject.keywordAuthor | Forest biomass | - |
| dc.subject.keywordAuthor | Biosorption | - |
| dc.subject.keywordAuthor | Chromium(VI) reduction | - |
| dc.subject.keywordAuthor | Kinetic model | - |
| dc.subject.keywordAuthor | Wastewater treatment | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
