Detailed Information

Cited 15 time in webofscience Cited 16 time in scopus
Metadata Downloads

Dihydroxynaphthalene-based mimicry of fungal melanogenesis for multifunctional coatingsopen access

Authors
Jeon, Jong-RokThao Thanh LeChang, Yoon-Seok
Issue Date
May-2016
Publisher
WILEY
Citation
MICROBIAL BIOTECHNOLOGY, v.9, no.3, pp 305 - 315
Pages
11
Indexed
SCIE
SCOPUS
Journal Title
MICROBIAL BIOTECHNOLOGY
Volume
9
Number
3
Start Page
305
End Page
315
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/15521
DOI
10.1111/1751-7915.12347
ISSN
1751-7915
Abstract
Material-independent adhesive action derived from polycatechol structures has been intensively studied due to its high applicability in surface engineering. Here, we for the first time demonstrate that a dihydroxynaphthalene-based fungal melanin mimetic, which exhibit a catechol-free structure, can act as a coating agent for material-independent surface modifications on the nanoscale. This mimetic was made by using laccase to catalyse the oxidative polymerization of specifically 2,7-dihydroxynaphthalene. Analyses of the product of this reaction, using Fourier transform infrared-attenuated total reflectance and X-ray photoelectron spectroscopy, bactericidal action, charge-dependent sorption behaviour, phenol content, Zeta potential measurements and free radical scavenging activity, yielded results consistent with it containing hydroxyphenyl groups. Moreover, nuclear magnetic resonance analyses of the product revealed that C-O coupling and C-C coupling were the main mechanisms for its synthesis, thus clearly excluding a catechol structure in the polymerization. This product, termed poly(2,7-DHN), was successfully deposited onto a wide variety of solid surfaces, including metals, polymeric materials, ceramics, biosurfaces and mineral complexes. The melanin-like polymerization could be used to co-immobilize other organic molecules, forming functional surfaces. In addition, the hydroxyphenyl group contained in the coated poly(2,7-DHN) induced secondary metal chelation/reduction and adhesion with proteins, suggesting the potential of this poly(2,7-DHN) layer to serve as a platform material for a variety of surface engineering applications. Moreover, the novel physicochemical properties of the poly(2,7-DHN) illuminate its potential applications as bactericidal, radical-scavenging and pollutant-sorbing agents.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Jong Rok photo

Jeon, Jong Rok
대학원 (응용생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE