Detailed Information

Cited 5 time in webofscience Cited 5 time in scopus
Metadata Downloads

Electrochemical properties of enclosed silicon nanopowder electrode inserted in integrated TiO2 nanotubes grown on titanium for Li-ion battery

Authors
Ha, Jong-KeunChauhan, Ghanshyam S.Ahn, Jou-HyeonAhn, Hyo-JunCho, Kwon-Koo
Issue Date
Oct-2016
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Silicon nanopowder anode; enclosed structure; Titanium dioxide nanotube; Powder insertion protocol; Binder coating
Citation
ELECTROCHIMICA ACTA, v.215, pp 674 - 681
Pages
8
Indexed
SCI
SCIE
SCOPUS
Journal Title
ELECTROCHIMICA ACTA
Volume
215
Start Page
674
End Page
681
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/15239
DOI
10.1016/j.electacta.2016.08.114
ISSN
0013-4686
1873-3859
Abstract
Si-based electrodes are being designed for use in Lithium-ion batteries with an aim at attaining large energy density and long and stable cycle life. In view of its high theoretical capacity (4200 mAh g(-1)), Si has huge potential as anode material. In this study, we report improvement in the cycling performance of the cell designed with electrode having Si-nanopowder contained in the TiO2 nanotube array, which is not a composite material. Si-nanopowder is incorporated on the nanotube arrays by three different protocols. The Si-nanopowder electrode prepared by using the facile brushing method, proposed in this study, followed by the surface coating with binder exhibited high cycling behavior. Especially, the cell made with the anode material fabricated by brushing of Si-nanopowder into the TiO2 nanotube array, having diameter of 150 nm, yield high capacity retention of 1824.9 mAh g(-1) up to 300 cycles in the lithiation process at 0.1 C-rate. (C) 2016 Published by Elsevier Ltd.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ahn, Hyo Jun photo

Ahn, Hyo Jun
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE