Detailed Information

Cited 52 time in webofscience Cited 51 time in scopus
Metadata Downloads

Understanding the Grain Boundary Behavior of Bimetallic Platinum-Cobalt Alloy Nanowires toward Oxygen Electro-Reduction

Authors
Kabiraz, Mrinal KantiRuqia, BibiKim, JeonghyeonKim, HaesolKim, Hee JinHong, YoungminKim, Mi JiKim, Young KyoungKim, ChanLee, Won-JaeLee, WonkyunHwang, Gyo HyunRi, Hyeong CheolBaik, HionsuckOh, Hyung-SukLee, Young WookGao, LeiHuang, HongwenPaek, Seung MinJo, Youn-JungChoi, Chang HyuckHan, Sang WooChoi, Sang-Il
Issue Date
Mar-2022
Publisher
American Chemical Society
Keywords
platinum; cobalt; nanowire; grain boundary; oxygen reduction reaction
Citation
ACS Catalysis, v.12, no.6, pp 3516 - 3523
Pages
8
Indexed
SCIE
SCOPUS
Journal Title
ACS Catalysis
Volume
12
Number
6
Start Page
3516
End Page
3523
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/1491
DOI
10.1021/acscatal.1c05766
ISSN
2155-5435
Abstract
Grain boundaries (GBs) are defects in crystal structures, which are in general known to be highly active toward various electrocatalytic reactions. Herein, we identify the adverse behaviors of the GBs for bimetallic platinum-cobalt (Pt-Co) nanocatalysts in the oxygen reduction reaction (ORR). As model catalysts, GB-rich Pt-Co nanowires (Pt-Co GB-NWs) and single-crystalline Pt-Co nanowires (Pt-Co SC-NWs) are synthesized. They have very similar diameters, Pt-to-Co ratios, and Pt-rich surface structures, except for the GB populations, which can be precisely controlled by applying an external magnetic field during their synthesis. The presence of GBs in Pt-Co NWs promotes Co leaching at an applied electrochemical potential, inducing significant changes in the surface Pt-to-Co ratio. The resulting Pt-Co GB-NWs perform only half the ORR activity compared with the Pt-Co SC-NWs. As a result, it is revealed that the surface GB sites are deactivated by causing elemental leaching and may not act as an ORR promoter for the Pt-Co nanowire catalyst.
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 화학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Young Wook photo

Lee, Young Wook
사범대학 (화학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE