Detailed Information

Cited 11 time in webofscience Cited 15 time in scopus
Metadata Downloads

The involvement of histone methylation in osteoblastic differentiation of human periosteum-derived cells cultured in vitro under hypoxic conditions

Authors
Yoon, Dae-KwanPark, Ji-SungRho, Gyu-JinLee, Hyeon-JeongSung, Iel-YongSon, Jang-HoPark, Bong-WookKang, Young-HoonByun, Sung-HoonHwang, Sun-ChulWoo, Dong KyunCho, Yeong-CheolByun, June-Ho
Issue Date
Oct-2017
Publisher
WILEY
Keywords
epigenetics; histone methylation; hPDCs; hypoxia; osteoblastic differentiation
Citation
CELL BIOCHEMISTRY AND FUNCTION, v.35, no.7, pp 441 - 452
Pages
12
Indexed
SCI
SCIE
SCOPUS
Journal Title
CELL BIOCHEMISTRY AND FUNCTION
Volume
35
Number
7
Start Page
441
End Page
452
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/13432
DOI
10.1002/cbf.3302
ISSN
0263-6484
1099-0844
Abstract
Although oxygen concentrations affect the growth and function of mesenchymal stem cells (MSCs), the impact of hypoxia on osteoblastic differentiation is not understood. Likewise, the effect of hypoxia-induced epigenetic changes on osteoblastic differentiation of MSCs is unknown. The aim of this study was to examine the in vitro hypoxic response of human periosteum-derived cells (hPDCs). Hypoxia resulted in greater proliferation of hPDCs as compared with those cultured in normoxia. Further, hypoxic conditions yielded decreased expression of apoptosis- and senescence-associated genes by hPDCs. Osteoblast phenotypes of hPDCS were suppressed by hypoxia, as suggested by alkaline phosphatase activity, alizarin red-S-positive mineralization, and mRNA expression of osteoblast-related genes. Chromatin immunoprecipitation assays showed an increased presence of H3K27me3, trimethylation of lysine 27 on histone H3, on the promoter region of bone morphogenetic protein-2. In addition, mRNA expression of histone lysine demethylase 6B (KDM6B) by hPDCs was significantly decreased in hypoxic conditions. Our results suggest that an increased level of H3K27me3 on the promoter region of bone morphogenetic protein-2, in combination with downregulation of KDM6B activity, is involved in the suppression of osteogenic phenotypes of hPDCs cultured in hypoxic conditions. Although oxygen tension plays an important role in the viability and maintenance of MSCs in an undifferentiated state, the effect of hypoxia on osteoblastic differentiation of MSCs remains controversial. In addition, evidence regarding the importance of epigenetics in regulating MSCs has been limited. This study was to examine the role hypoxia on osteoblastic differentiation of hPDCs, and we examined whether histone methylation is involved in the observed effect of hypoxia on osteogenic differentiation of hPDCs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medicine > Journal Articles
약학대학 > 약학과 > Journal Articles
수의과대학 > Department of Veterinary Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Rho, Gyu Jin photo

Rho, Gyu Jin
수의과대학 (수의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE