Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Studyopen access
- Authors
- Lee, Jeong Hoon; Kim, Ki Hwan; Lee, Eun Hye; Ahn, Jong Seok; Ryu, Jung Kyu; Park, Young Mi; Shin, Gi Won; Kim, Young Joong; Choi, Hye Young
- Issue Date
- May-2022
- Publisher
- KOREAN SOCIETY OF RADIOLOGY
- Keywords
- Breast cancer; Mammography; Screening; Deep-learning; Artificial intelligence; Reading time; Multi-reader study
- Citation
- KOREAN JOURNAL OF RADIOLOGY, v.23, no.5, pp.505 - 516
- Indexed
- SCIE
SCOPUS
KCI
- Journal Title
- KOREAN JOURNAL OF RADIOLOGY
- Volume
- 23
- Number
- 5
- Start Page
- 505
- End Page
- 516
- URI
- https://scholarworks.bwise.kr/gnu/handle/sw.gnu/1301
- DOI
- 10.3348/kjr.2021.0476
- ISSN
- 1229-6929
- Abstract
- Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the time.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Medicine > Department of Medicine > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.