Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of Silicon on Growth and Tolerance of Torenia fournieri In Vitro to NaCl StressEffect of Silicon on Growth and Tolerance of Torenia fournieri In Vitro to NaCl Stress

Other Titles
Effect of Silicon on Growth and Tolerance of Torenia fournieri In Vitro to NaCl Stress
Eun Hye JoPrabhakaran Soundararajan박유경정병룡
Issue Date
ascorbate peroxidase; catalase
화훼연구, v.26, no.2, pp.68 - 76
Journal Title
Start Page
End Page
The beneficial effect of silicon (Si) in increasing salt stress tolerance has been observed in many plants, including the cereal crops rice, wheat, and barley. In this experiment, we examined the effect of Si on the survival and growth of torenia (Torenia fournieri L inden ex F oum) ‘ Duchess Blue and White’ cultured in vitro in the presence and absence of salt stress. Previous reports had suggested that torenia exhibited low salt tolerance. Shoot buds isolated from 16-day-old seedlings were cultured on Murashige and Skoog (MS) medium containing 0, 50, or 100 mM NaCl alone or in combination with 1.8 or 3.6 mM Si supplied as K2SiO3. Plant survival rate was significantly reduced by NaCl supplementation compared with the control. The survival rate significantly increased to 100% when 1.8 or 3.6 mM Si was added to the MS medium containing 50 mM NaCl. However, only 31% of plantlets survived when 1.8 mM Si was added to the culture medium containing 100 mM NaCl. Shoot and root lengths significantly decreased with increasing NaCl concentration in the culture medium, whereas addition of NaCl to the MS medium also significantly reduced fresh and dry weights. However, Si supplementation significantly increased fresh and dry weights under 50 mM NaCl, compared with the control. The greatest fresh and dry weights were recorded when shoot buds were cultured on MS medium containing 50 mM NaCl and 3.6 mM Si. The activities of the antioxidant-scavenging enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), but not peroxidase (POD), were markedly higher in the presence of 50 mM NaCl than the activity of the control. When Si was added to the medium containing 50 mM NaCl, activities of SOD, POD, APX, and CAT decreased as compared with the 50 mM NaCl treatment. Thus, Si-mediated tolerance to NaCl stress was not due to increased activity of antioxidant enzymes. Although Si was not effective in increasing tolerance to high salt concentrations, such as 100 mM NaCl, the results suggested that Si supplementation could effectively enhance tolerance to 50 mM NaCl stress.
Files in This Item
There are no files associated with this item.
Appears in
ETC > Journal Articles


Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher


Total Views & Downloads