Detailed Information

Cited 16 time in webofscience Cited 19 time in scopus
Metadata Downloads

Microstructure-dependent fatigue behavior of aged Cu-6Ni-1.5Si alloy with discontinuous/cellular precipitates

Full metadata record
DC Field Value Language
dc.contributor.authorGoto, M.-
dc.contributor.authorYamamoto, T.-
dc.contributor.authorHan, S. Z.-
dc.contributor.authorLim, S. H.-
dc.contributor.authorKim, S.-
dc.contributor.authorIwamura, T.-
dc.contributor.authorKitamura, J.-
dc.contributor.authorAhn, J. -H.-
dc.contributor.authorYakushiji, T.-
dc.contributor.authorLee, J.-
dc.date.accessioned2022-12-26T15:05:29Z-
dc.date.available2022-12-26T15:05:29Z-
dc.date.issued2019-02-18-
dc.identifier.issn0921-5093-
dc.identifier.issn1873-4936-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/9425-
dc.description.abstractThe effect of microstructure on the fatigue strength of age-hardened Cu-6Ni-1.5Si alloy was investigated in this study. The aging was conducted at 500 degrees C for 0.5 h for the precipitation of disk-shaped delta-Ni2Si precipitates (continuous precipitates) and 3 h for the discontinuous precipitation of fiber-shaped, stable delta-Ni2Si precipitates to strengthen the Cu matrix. The tensile strength of 0.5 h-aged specimens was about 1.3 times greater than that of the 3 h-aged counterparts, but with inferior electrical conductivity. Despite the considerable difference in tensile strength, no notable difference in fatigue strength was observed between 0.5 h- and 3 h-aged specimens. The 3 h-aged specimens had superior electrical conductivity without sacrificing fatigue strength of the 0.5 h-aged specimens. The physical background of high-cycle fatigue strength in Cu-6Ni-1.5Si alloys with continuous precipitates and discontinuous precipitates is discussed considering the microstructure-sensitive behavior of fatigue cracks.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleMicrostructure-dependent fatigue behavior of aged Cu-6Ni-1.5Si alloy with discontinuous/cellular precipitates-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.msea.2019.01.057-
dc.identifier.scopusid2-s2.0-85060198464-
dc.identifier.wosid000458939200006-
dc.identifier.bibliographicCitationMaterials Science and Engineering: A, v.747, pp 63 - 72-
dc.citation.titleMaterials Science and Engineering: A-
dc.citation.volume747-
dc.citation.startPage63-
dc.citation.endPage72-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusHIGH-CYCLE FATIGUE-
dc.subject.keywordPlusELECTRICAL-PROPERTIES-
dc.subject.keywordPlusPROPAGATION BEHAVIOR-
dc.subject.keywordPlusCRACK INITIATION-
dc.subject.keywordPlusCU-
dc.subject.keywordPlusMICROCRACKS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordAuthorCopper alloys-
dc.subject.keywordAuthorFatigue-
dc.subject.keywordAuthorMicrostructure-
dc.subject.keywordAuthorPrecipitates-
dc.subject.keywordAuthorCrack-
dc.subject.keywordAuthorGrain boundaries-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sang Shik photo

Kim, Sang Shik
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE