Detailed Information

Cited 172 time in webofscience Cited 228 time in scopus
Metadata Downloads

Deep Cooperative Sensing: Cooperative Spectrum Sensing Based on Convolutional Neural Networks

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Woongsup-
dc.contributor.authorKim, Minhoe-
dc.contributor.authorCho, Dong-Ho-
dc.date.accessioned2022-12-26T15:05:20Z-
dc.date.available2022-12-26T15:05:20Z-
dc.date.issued2019-03-
dc.identifier.issn0018-9545-
dc.identifier.issn1939-9359-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/9414-
dc.description.abstractIn this paper, we investigate cooperative spectrum sensing (CSS) in a cognitive radio network (CRN) where multiple secondary users (SUs) cooperate in order to detect a primary user, which possibly occupies multiple bands simultaneously. Deep cooperative sensing (DCS), which constitutes the first CSS framework based on a convolutional neural network (CNN), is proposed. In DCS, instead of the explicit mathematical modeling of CSS, the strategy for combining the individual sensing results of the SUs is learned autonomously with a CNN using training sensing samples regardless of whether the individual sensing results are quantized or not. Moreover, both spectral and spatial correlation of individual sensing outcomes are taken into account such that an environment-specific CSS is enabled in DCS. Through simulations, we show that the performance of CSS can be greatly improved by the proposed DCS.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleDeep Cooperative Sensing: Cooperative Spectrum Sensing Based on Convolutional Neural Networks-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TVT.2019.2891291-
dc.identifier.scopusid2-s2.0-85063295930-
dc.identifier.wosid000461843300078-
dc.identifier.bibliographicCitationIEEE Transactions on Vehicular Technology, v.68, no.3, pp 3005 - 3009-
dc.citation.titleIEEE Transactions on Vehicular Technology-
dc.citation.volume68-
dc.citation.number3-
dc.citation.startPage3005-
dc.citation.endPage3009-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalResearchAreaTransportation-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalWebOfScienceCategoryTransportation Science & Technology-
dc.subject.keywordPlusCOGNITIVE RADIO NETWORKS-
dc.subject.keywordAuthorCognitive radio network-
dc.subject.keywordAuthorcooperative spectrum sensing-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorconvolutional neural network-
dc.subject.keywordAuthorcorrelation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE