Cited 2 time in
Thermally driven phase transition of cobalt hydroxide sheets via cobalt oxides to cobalt nanoparticles
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Yoon, Aram | - |
| dc.contributor.author | Kim, Gyutae | - |
| dc.contributor.author | Lee, Minjeong | - |
| dc.contributor.author | Lee, Zonghoon | - |
| dc.contributor.author | Ryu, Gyoeng Hee | - |
| dc.date.accessioned | 2022-12-26T05:41:19Z | - |
| dc.date.available | 2022-12-26T05:41:19Z | - |
| dc.date.issued | 2022-09 | - |
| dc.identifier.issn | 2055-6756 | - |
| dc.identifier.issn | 2055-6764 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/923 | - |
| dc.description.abstract | Transition metal oxides, which include many stoichiometric variations, are formed into various crystal structures by the atomic arrangement of cations and anions according to stoichiometric composition and are used for a wide range of applications based on this. Among them, cobalt oxide, which has wide crystal structures depending on the lattice points of the anion and the valence of the Co cation, from its hydroxide formula, is attracting a lot of attention due to its interesting catalytic properties due to its crystal structure. In this study, using the synthesized Co(OH)(2) nanosheets, the real-time behavior of the phase transition that occurs when continuous heat is applied to the sample has been systematically analyzed using an aberration-corrected scanning transmission electron microscope. The layered Co(OH)(2) phase passes through hexagonal CoO and cubic CoO phases to finally become Co nanoparticles, but when the temperature is dropped in the hexagonal phase, spinel Co3O4 is formed. These results suggest that various phases included in transition metal oxides can be selectively implemented according to temperature range control. | - |
| dc.format.extent | 7 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Royal Society of Chemistry | - |
| dc.title | Thermally driven phase transition of cobalt hydroxide sheets via cobalt oxides to cobalt nanoparticles | - |
| dc.type | Article | - |
| dc.publisher.location | 영국 | - |
| dc.identifier.doi | 10.1039/d2nh00218c | - |
| dc.identifier.scopusid | 2-s2.0-85137829129 | - |
| dc.identifier.wosid | 000837400100001 | - |
| dc.identifier.bibliographicCitation | Nanoscale Horizons, v.7, no.10, pp 1210 - 1216 | - |
| dc.citation.title | Nanoscale Horizons | - |
| dc.citation.volume | 7 | - |
| dc.citation.number | 10 | - |
| dc.citation.startPage | 1210 | - |
| dc.citation.endPage | 1216 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
| dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.subject.keywordPlus | METAL-OXIDES | - |
| dc.subject.keywordPlus | HYDROTHERMAL SYNTHESIS | - |
| dc.subject.keywordPlus | OXIDATION | - |
| dc.subject.keywordPlus | COO | - |
| dc.subject.keywordPlus | WATER | - |
| dc.subject.keywordPlus | NANOCRYSTALS | - |
| dc.subject.keywordPlus | DEPOSITION | - |
| dc.subject.keywordPlus | CHEMISTRY | - |
| dc.subject.keywordPlus | STATE | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
