Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Cheng-Lin | - |
dc.contributor.author | Narayana, P. L. | - |
dc.contributor.author | Reddy, N. S. | - |
dc.contributor.author | Choi, Seong-Woo | - |
dc.contributor.author | Yeom, Jong-Taek | - |
dc.contributor.author | Hong, Jae-Keun | - |
dc.contributor.author | Park, Chan Hee | - |
dc.date.accessioned | 2022-12-26T15:01:17Z | - |
dc.date.available | 2022-12-26T15:01:17Z | - |
dc.date.issued | 2019-05 | - |
dc.identifier.issn | 1005-0302 | - |
dc.identifier.issn | 1941-1162 | - |
dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/9174 | - |
dc.description.abstract | Ti-2Al-9.2Mo-2Fe is a low-cost beta titanium alloy with well-balanced strength and ductility, but hot working of this alloy is complex and unfamiliar. Understanding the nonlinear relationships among the strain, strain rate, temperature, and flow stress of this alloy is essential to optimize the hot working process. In this study, a deep neural network (DNN) model was developed to correlate flow stress with a wide range of strains (0.025-0.6), strain rates (0.01-10 s(-1)) and temperatures (750-1000 degrees C). The model, which was tested with 96 unseen datasets, showed better performance than existing models, with a correlation coefficient of 0.999. The processing map constructed using the DNN model was effective in predicting the microstructural evolution of the alloy. Moreover, it led to the optimization of hot-working conditions to avoid the formation of brittle precipitates (temperatures of 820-1000 degrees C and strain rates of 0.01-0.1 s(-1)). (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. | - |
dc.format.extent | 10 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Allerton Press Inc. | - |
dc.title | Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network | - |
dc.type | Article | - |
dc.publisher.location | 중국 | - |
dc.identifier.doi | 10.1016/j.jmst.2018.11.018 | - |
dc.identifier.scopusid | 2-s2.0-85060877974 | - |
dc.identifier.wosid | 000460640200025 | - |
dc.identifier.bibliographicCitation | Journal of Materials Science & Technology, v.35, no.5, pp 907 - 916 | - |
dc.citation.title | Journal of Materials Science & Technology | - |
dc.citation.volume | 35 | - |
dc.citation.number | 5 | - |
dc.citation.startPage | 907 | - |
dc.citation.endPage | 916 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
dc.subject.keywordPlus | CONSTITUTIVE RELATIONSHIP | - |
dc.subject.keywordPlus | MICROSTRUCTURAL EVOLUTION | - |
dc.subject.keywordPlus | DYNAMIC RECRYSTALLIZATION | - |
dc.subject.keywordPlus | MECHANICAL-PROPERTIES | - |
dc.subject.keywordPlus | ARRHENIUS-TYPE | - |
dc.subject.keywordPlus | FLOW-STRESS | - |
dc.subject.keywordPlus | PROCESSING MAPS | - |
dc.subject.keywordPlus | STRAIN RATES | - |
dc.subject.keywordPlus | PREDICTION | - |
dc.subject.keywordPlus | TEMPERATURES | - |
dc.subject.keywordAuthor | Deep neural networks | - |
dc.subject.keywordAuthor | Back propagation | - |
dc.subject.keywordAuthor | Processing map | - |
dc.subject.keywordAuthor | Recrystallization | - |
dc.subject.keywordAuthor | Beta titanium | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0533
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.