Cited 20 time in
Arabidopsis GIGANTEA negatively regulates chloroplast biogenesis and resistance to herbicide butafenacil
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cha, Joon-Yung | - |
| dc.contributor.author | Lee, Da-Yeon | - |
| dc.contributor.author | Ali, Imdad | - |
| dc.contributor.author | Jeong, Song Yi | - |
| dc.contributor.author | Shin, Bobae | - |
| dc.contributor.author | Ji, Hyunjung | - |
| dc.contributor.author | Kim, Jung Sun | - |
| dc.contributor.author | Kim, Min-Gab | - |
| dc.contributor.author | Kim, Woe-Yeon | - |
| dc.date.accessioned | 2022-12-26T14:47:08Z | - |
| dc.date.available | 2022-12-26T14:47:08Z | - |
| dc.date.issued | 2019-07 | - |
| dc.identifier.issn | 0721-7714 | - |
| dc.identifier.issn | 1432-203X | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/8983 | - |
| dc.description.abstract | Key messageArabidopsis GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil by enhanced activity and transcriptional levels of antioxidant enzymesAbstractChloroplast biogenesis is blocked by retrograde signaling triggered by diverse internal and external cues, including sugar, reactive oxygen species (ROS), phytohormones, and abiotic stress. Efficient chloroplast biogenesis is essential for crop productivity due to its effect on photosynthetic efficiency, and is associated with agronomic traits such as insect/disease resistance, herbicide resistance, and abiotic stress tolerance. Here, we show that the circadian clock-controlled gene GIGANTEA (GI) regulates chloroplast biogenesis in Arabidopsis thaliana. The gi-2 mutant showed reduced sensitivity to the chloroplast biogenesis inhibitor lincomycin, maintaining high levels of photosynthetic proteins. By contrast, wild-type and GI-overexpressing plants were sensitive to lincomycin, with variegated leaves and reduced photosynthetic protein levels. GI is degraded by lincomycin, suggesting that GI is genetically linked to chloroplast biogenesis. The GI mutant alleles gi-1 and gi-2 were resistant to the herbicide butafenacil, which inhibits protoporphyrinogen IX oxidase activity and triggers ROS-mediated cell death via the accumulation of chlorophyll precursors. Butafenacil-mediated accumulation of superoxide anions and H2O2 was not detected in gi-1 or gi-2, as revealed by histochemical staining. The activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase were 1.2-1.4-fold higher in both gi mutants compared to the wild type. Finally, the expression levels of antioxidant enzyme genes were 1.5-2-fold higher in the mutants than in the wild type. These results suggest that GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil, providing evidence for a genetic link between GI and chloroplast biogenesis, which could facilitate the development of herbicide-resistant crops. | - |
| dc.format.extent | 9 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Springer Verlag | - |
| dc.title | Arabidopsis GIGANTEA negatively regulates chloroplast biogenesis and resistance to herbicide butafenacil | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1007/s00299-019-02409-x | - |
| dc.identifier.scopusid | 2-s2.0-85067085054 | - |
| dc.identifier.wosid | 000472227900004 | - |
| dc.identifier.bibliographicCitation | Plant Cell Reports, v.38, no.7, pp 793 - 801 | - |
| dc.citation.title | Plant Cell Reports | - |
| dc.citation.volume | 38 | - |
| dc.citation.number | 7 | - |
| dc.citation.startPage | 793 | - |
| dc.citation.endPage | 801 | - |
| dc.type.docType | Review | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | sci | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Plant Sciences | - |
| dc.relation.journalWebOfScienceCategory | Plant Sciences | - |
| dc.subject.keywordPlus | CIRCADIAN CLOCK | - |
| dc.subject.keywordPlus | HOMEOSTASIS | - |
| dc.subject.keywordPlus | TOLERANCE | - |
| dc.subject.keywordPlus | PROTEIN | - |
| dc.subject.keywordPlus | OXIDASE | - |
| dc.subject.keywordPlus | MODE | - |
| dc.subject.keywordPlus | GENE | - |
| dc.subject.keywordAuthor | Butafenacil | - |
| dc.subject.keywordAuthor | Chloroplast biogenesis | - |
| dc.subject.keywordAuthor | GIGANTEA | - |
| dc.subject.keywordAuthor | Herbicide resistance | - |
| dc.subject.keywordAuthor | PPO | - |
| dc.subject.keywordAuthor | Retrograde signaling | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
