Detailed Information

Cited 22 time in webofscience Cited 32 time in scopus
Metadata Downloads

Optimization of Greenhouse Thermal Screens for Maximized Energy Conservation

Full metadata record
DC Field Value Language
dc.contributor.authorRasheed, Adnan-
dc.contributor.authorNa, Wook Ho-
dc.contributor.authorLee, Jong Won-
dc.contributor.authorKim, Hyeon Tae-
dc.contributor.authorLee, Hyun Woo-
dc.date.accessioned2022-12-26T14:32:13Z-
dc.date.available2022-12-26T14:32:13Z-
dc.date.issued2019-10-
dc.identifier.issn1996-1073-
dc.identifier.issn1996-1073-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/8656-
dc.description.abstractIn this work, we proposed a Building Energy Simulation (BES) dynamic climatic model of greenhouses by utilizing Transient System Simulation (TRNSYS 18) software to study the effect of use of different thermal screen materials and control strategies of thermal screens on heat energy requirement of greenhouses. Thermal properties of the most common greenhouse thermal screens were measured and used in the BES model. Nash-Sutcliffe efficiency coefficients of 0.84 and 0.78 showed good agreement between the computed and experimental results, thus the proposed model appears to be appropriate for performing greenhouse thermal simulations. The proposed model was used to evaluate the effects of different thermal screens including; Polyester, Luxous, Tempa, and Multi-layers, as well as to evaluate control strategies of greenhouse thermal screens, subjected to Daegu city, (latitude 35.53 degrees N, longitude 128.36 degrees E) South Korea winter season weather conditions. Obtained results show that the heating requirement of greenhouses with multi-layer night thermal screens was 20%, 5.4%, and 13.5%, less than the Polyester, Luxous, and Tempa screens respectively. Thus, our experiments confirm that the use of multi-layered thermal screen can reduce greenhouse heat energy requirement. Furthermore, screen-control with outside solar radiation at an optimum setpoint of 60 W.m(-2) significantly influences the greenhouse's energy conservation capacity, as it exhibited 699.5 MJ.m(-2), the least energy demand of all strategies tested. Moreover, the proposed model allows dynamic simulation of greenhouse systems and enables researchers and farmers to evaluate different screens and screen control strategies that suit their investment capabilities and local weather conditions.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleOptimization of Greenhouse Thermal Screens for Maximized Energy Conservation-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/en12193592-
dc.identifier.scopusid2-s2.0-85072982811-
dc.identifier.wosid000498072600003-
dc.identifier.bibliographicCitationENERGIES, v.12, no.19-
dc.citation.titleENERGIES-
dc.citation.volume12-
dc.citation.number19-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.subject.keywordPlusSENSITIVITY-ANALYSIS-
dc.subject.keywordPlusMICROCLIMATE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCURTAIN-
dc.subject.keywordAuthorgreenhouse modeling-
dc.subject.keywordAuthorheating demand-
dc.subject.keywordAuthorgreenhouse microclimate-
dc.subject.keywordAuthorgreenhouse covering-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 생물산업기계공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyeon Tae photo

Kim, Hyeon Tae
농업생명과학대학 (생물산업기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE