Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

The transcendence of zeros of canonical basis elements of the space of weakly holomorphic modular forms for Gamma(0)(2)

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, SoYoung-
dc.contributor.authorIm, Bo-Hae-
dc.date.accessioned2022-12-26T14:30:44Z-
dc.date.available2022-12-26T14:30:44Z-
dc.date.issued2019-11-
dc.identifier.issn0022-314X-
dc.identifier.issn1096-1658-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/8554-
dc.description.abstractWe consider the canonical basis elements f(k,m)(epsilon) for the space of weakly holomorphic modular forms of weight k for the Hecke congruence group Gamma(0)(2) and we prove that for all m >= c(k) for some constant c(k), if z(0) in a fundamen- tal domain for Gamma(0)(2) is a zero of f(k,m)(epsilon), then either z(0) is in {i/root 2, - 1/2 + i/2, 1/2 + i/2, -1+i root 7/4, 1+i root 7/4} or z(0) is transcendental. (C) 2019 Elsevier Inc. All rights reserved.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherAcademic Press-
dc.titleThe transcendence of zeros of canonical basis elements of the space of weakly holomorphic modular forms for Gamma(0)(2)-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.jnt.2019.04.012-
dc.identifier.scopusid2-s2.0-85065914967-
dc.identifier.wosid000478706900017-
dc.identifier.bibliographicCitationJournal of Number Theory, v.204, pp 423 - 434-
dc.citation.titleJournal of Number Theory-
dc.citation.volume204-
dc.citation.startPage423-
dc.citation.endPage434-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorWeakly holomorphic modular form-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, So Young photo

Choi, So Young
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE