Cited 20 time in
Involvement of mitochondrial biogenesis during the differentiation of human periosteum-derived mesenchymal stem cells into adipocytes, chondrocytes and osteocytes
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lee, A. Ram | - |
| dc.contributor.author | Moon, Dong Kyu | - |
| dc.contributor.author | Siregar, Adrian | - |
| dc.contributor.author | Moon, Sun Young | - |
| dc.contributor.author | Jeon, Ryoung-Hoon | - |
| dc.contributor.author | Son, Young-Bum | - |
| dc.contributor.author | Kim, Bo Gyu | - |
| dc.contributor.author | Hah, Young-Sool | - |
| dc.contributor.author | Hwang, Sun-Chul | - |
| dc.contributor.author | Byun, June-Ho | - |
| dc.contributor.author | Woo, Dong Kyun | - |
| dc.date.accessioned | 2022-12-26T14:17:22Z | - |
| dc.date.available | 2022-12-26T14:17:22Z | - |
| dc.date.issued | 2019-12 | - |
| dc.identifier.issn | 0253-6269 | - |
| dc.identifier.issn | 1976-3786 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/8452 | - |
| dc.description.abstract | Due to a rapidly expanding aging population, the incidence of age-related or degenerative diseases has increased, and efforts to handle the issue with regenerative medicine via adult stem cells have become more important. And it is now clear that the mitochondrial energy metabolism is important for stem cell differentiation. When stem cells commit to differentiate, glycolytic metabolism is being shifted to mitochondrial oxidative phosphorylation (OXPHOS) to meet an increased cellular energy demand required for differentiated cells. However, the nature of cellular metabolisms during the differentiation process of periosteum-derived mesenchymal stem cells (POMSC) is still unclear. In the present study, we investigated mitochondrial biogenesis during the adipogenic, chondrogenic, and osteogenic differentiation of POMSCs. Both mitochondrial DNA (mtDNA) contents and mitochondrial proteins (VDAC and mitochondrial OXPHOS complex subunits) were increased during all of these mesenchymal lineage differentiations of POMSCs. Interestingly, glycolytic metabolism is reduced as POMSCs undergo osteogenic differentiation. Furthermore, reducing mtDNA contents by ethidium bromide treatments prevents osteogenic differentiation of POMSCs. In conclusion, these results indicate that mitochondrial biogenesis and OXPHOS metabolism play important roles in the differentiation of POMCS and suggest that pharmaceutical modulation of mitochondrial biogenesis and/or function can be a novel regulation for POMSC differentiation and regenerative medicine. | - |
| dc.format.extent | 11 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | 대한약학회 | - |
| dc.title | Involvement of mitochondrial biogenesis during the differentiation of human periosteum-derived mesenchymal stem cells into adipocytes, chondrocytes and osteocytes | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.1007/s12272-019-01198-x | - |
| dc.identifier.scopusid | 2-s2.0-85076025136 | - |
| dc.identifier.wosid | 000500619700001 | - |
| dc.identifier.bibliographicCitation | Archives of Pharmacal Research, v.42, no.12, pp 1052 - 1062 | - |
| dc.citation.title | Archives of Pharmacal Research | - |
| dc.citation.volume | 42 | - |
| dc.citation.number | 12 | - |
| dc.citation.startPage | 1052 | - |
| dc.citation.endPage | 1062 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART002530942 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Pharmacology & Pharmacy | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Medicinal | - |
| dc.relation.journalWebOfScienceCategory | Pharmacology & Pharmacy | - |
| dc.subject.keywordPlus | OSTEOGENIC DIFFERENTIATION | - |
| dc.subject.keywordPlus | OSTEOBLASTS | - |
| dc.subject.keywordPlus | METABOLISM | - |
| dc.subject.keywordPlus | BIOLOGY | - |
| dc.subject.keywordAuthor | Mesenchymal stem cell | - |
| dc.subject.keywordAuthor | Differentiation | - |
| dc.subject.keywordAuthor | Mitochondria | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
