Cited 78 time in
A Monotone Bregan Projection Algorithm for Fixed Point and Equilibrium Problems in a Reflexive Banach Space
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cho, Sun Young | - |
| dc.date.accessioned | 2022-12-26T14:16:03Z | - |
| dc.date.available | 2022-12-26T14:16:03Z | - |
| dc.date.issued | 2020 | - |
| dc.identifier.issn | 0354-5180 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/8298 | - |
| dc.description.abstract | In this paper, a monotone Bregan projection algorithm is investigated for solving equilibrium problems and common fixed point problems of a family of closed multi-valued Bregman quasi-strict pseudocontractions. Strong convergence is guaranteed in the framework of reflexive Banach spaces. | - |
| dc.format.extent | 11 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Universitet of Nis | - |
| dc.title | A Monotone Bregan Projection Algorithm for Fixed Point and Equilibrium Problems in a Reflexive Banach Space | - |
| dc.type | Article | - |
| dc.publisher.location | 세르비아공화국 | - |
| dc.identifier.doi | 10.2298/FIL2005487C | - |
| dc.identifier.scopusid | 2-s2.0-85097612576 | - |
| dc.identifier.wosid | 000600791000005 | - |
| dc.identifier.bibliographicCitation | Filomat, v.34, no.5, pp 1487 - 1497 | - |
| dc.citation.title | Filomat | - |
| dc.citation.volume | 34 | - |
| dc.citation.number | 5 | - |
| dc.citation.startPage | 1487 | - |
| dc.citation.endPage | 1497 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | STRONG-CONVERGENCE THEOREMS | - |
| dc.subject.keywordPlus | VARIATIONAL INEQUALITY | - |
| dc.subject.keywordPlus | FINITE FAMILY | - |
| dc.subject.keywordPlus | ACCRETIVE-OPERATORS | - |
| dc.subject.keywordPlus | PROXIMAL METHOD | - |
| dc.subject.keywordPlus | ZERO-POINT | - |
| dc.subject.keywordPlus | MAPPINGS | - |
| dc.subject.keywordPlus | CONSTRAINTS | - |
| dc.subject.keywordAuthor | Bregman projection | - |
| dc.subject.keywordAuthor | convergence analysis | - |
| dc.subject.keywordAuthor | equilibrium problem | - |
| dc.subject.keywordAuthor | fixed point | - |
| dc.subject.keywordAuthor | variational inequality | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
