Cited 0 time in
Reinforcing ion-cluster connectivity via hyperbranched phosphonium units for high-performance and durable AEMWE membranes
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lee, Wooseok | - |
| dc.contributor.author | Jeon, Soomin | - |
| dc.contributor.author | Seo, Youngjin | - |
| dc.contributor.author | Min, Kyungwhan | - |
| dc.contributor.author | Maeng, Hyeonjun | - |
| dc.contributor.author | Kim, Jungmin | - |
| dc.contributor.author | Park, Chihoon | - |
| dc.contributor.author | Kim, Tae-Hyun | - |
| dc.date.accessioned | 2026-02-09T01:00:17Z | - |
| dc.date.available | 2026-02-09T01:00:17Z | - |
| dc.date.issued | 2026-04 | - |
| dc.identifier.issn | 0376-7388 | - |
| dc.identifier.issn | 1873-3123 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/82322 | - |
| dc.description.abstract | Anion exchange membrane water electrolysis (AEMWE) technology has been actively researched for the production of green hydrogen as a next-generation clean energy source, with a primary focus on developing high-performance anion-exchange membranes (AEMs). However, the relatively low ionic conductivity and alkaline stability of AEMs can compromise both the performance and durability of AEMWE systems. Recent studies have reported the introduction of branched structures to enhance microphase separation, thereby improving the ionic conductivity and stability of AEMs. In this study, hyperbranched triphenylphosphine units were incorporated into linear poly ( para- terphenyl piperidinium) (QPpTP), and the central phosphorus atom was functionalized into phosphonium (P+), yielding branched polymers with an ion-conducting group as the branched unit (b-QP m -QPpTP, m = 5, 7.5, 10). Triphenylphosphonium introduction enabled strong P+-OH- interactions, simultaneously achieving high water uptake, low swelling ratio, and excellent dimensional stability. Notably, b-QP5-QPpTP exhibited enhanced ion-cluster connectivity and a high OH− conductivity of 155.76 mS cm−1 at 80 °C. It also demonstrated outstanding water electrolysis performance of 6.98 A cm−2 at 2.0 V, as well as excellent long-term durability with a negligible voltage increase of 0.54 mV h−1 over 250 h, confirming its potential as a high-performance branched AEM material for next-generation AEMWE applications. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Elsevier B.V. | - |
| dc.title | Reinforcing ion-cluster connectivity via hyperbranched phosphonium units for high-performance and durable AEMWE membranes | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1016/j.memsci.2026.125203 | - |
| dc.identifier.scopusid | 2-s2.0-105028487870 | - |
| dc.identifier.bibliographicCitation | Journal of Membrane Science, v.744 | - |
| dc.citation.title | Journal of Membrane Science | - |
| dc.citation.volume | 744 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.subject.keywordAuthor | Anion exchange membrane | - |
| dc.subject.keywordAuthor | Hyperbranched structure | - |
| dc.subject.keywordAuthor | Ion-cluster connectivity | - |
| dc.subject.keywordAuthor | Triphenyl phosphonium | - |
| dc.subject.keywordAuthor | Water electrolysis | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0534
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
