Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

metaFun: An analysis pipeline for metagenomic big data with fast and unified functional searches

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Hyeon Gwon-
dc.contributor.authorSong, Ju Yeon-
dc.contributor.authorYoon, Jaekyung-
dc.contributor.authorChung, Yusook-
dc.contributor.authorKwon, Soon-Kyeong-
dc.contributor.authorKim, Jihyun F.-
dc.date.accessioned2026-01-29T08:00:10Z-
dc.date.available2026-01-29T08:00:10Z-
dc.date.issued2026-12-
dc.identifier.issn1949-0976-
dc.identifier.issn1949-0984-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/82221-
dc.description.abstractMetagenomic approaches offer unprecedented opportunities to characterize microbial community structure and function, yet several challenges remain unresolved. Inconsistent genome quality impairs reliability of metagenome-assembled genomes, lack of unified taxonomic criteria limits cross-study comparability, and multi-step workflows involving numerous programs and parameters hinder reproducibility and accessibility. We benchmarked existing programs and parameters using simulated metagenomic data to identify optimal configurations. metaFun is an open-source, end-to-end pipeline that integrates quality control, taxonomic profiling, functional profiling, de novo assembly, binning, genome assessment, comparative genomic analysis, pangenome annotation, network analysis, and strain-level microdiversity analysis into a unified framework. Interactive modules support standardized data interpretation and exploratory visualization. The pipeline is implemented with Nextflow and containerized with Apptainer, ensuring environment reproducibility and scalability. Comprehensive documentation is available at https://metafun-doc.readthedocs.io/en/main. The pipeline was validated using a colorectal cancer cohort dataset. By addressing key methodological gaps, metaFun facilitates accessible and reproducible metagenomic analysis for the broader research community.-
dc.language영어-
dc.language.isoENG-
dc.publisherLandes Bioscience-
dc.titlemetaFun: An analysis pipeline for metagenomic big data with fast and unified functional searches-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1080/19490976.2025.2611544-
dc.identifier.scopusid2-s2.0-105027348028-
dc.identifier.wosid001661549800001-
dc.identifier.bibliographicCitationGut Microbes, v.18, no.1-
dc.citation.titleGut Microbes-
dc.citation.volume18-
dc.citation.number1-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaGastroenterology & Hepatology-
dc.relation.journalResearchAreaMicrobiology-
dc.relation.journalWebOfScienceCategoryGastroenterology & Hepatology-
dc.relation.journalWebOfScienceCategoryMicrobiology-
dc.subject.keywordPlusGENOME-
dc.subject.keywordPlusALIGNMENT-
dc.subject.keywordPlusTOOL-
dc.subject.keywordAuthorWhole metagenome sequence-
dc.subject.keywordAuthortaxonomic classification-
dc.subject.keywordAuthorinteractive visualization-
dc.subject.keywordAuthorstandard operating procedure-
dc.subject.keywordAuthorreproducibility-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwon, Soon Kyeong photo

Kwon, Soon Kyeong
대학원 (응용생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE