Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deep learning identifies TP-41 for methylglyoxal scavenging in Alzheimer's treatment

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Aron-
dc.contributor.authorHong, Seong-Min-
dc.contributor.authorLee, Yeeun-
dc.contributor.authorLee, Jungeun-
dc.contributor.authorJeon, Seunggyu-
dc.contributor.authorSeo, Seung-Yong-
dc.contributor.authorLee, Jinhyuk-
dc.contributor.authorKim, Seon-Hyeok-
dc.contributor.authorKo, Eun Ji-
dc.contributor.authorLee, Hae Ran-
dc.contributor.authorJung, Sang Heon-
dc.contributor.authorBae, Munhyung-
dc.contributor.authorKang, Min Cheol-
dc.contributor.authorPark, Myoung Gyu-
dc.contributor.authorNam, Seungyoon-
dc.contributor.authorKim, Sun Yeou-
dc.date.accessioned2026-01-29T04:30:19Z-
dc.date.available2026-01-29T04:30:19Z-
dc.date.issued2026-01-
dc.identifier.issn1838-7640-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/82201-
dc.description.abstractRationale: Increased levels of advanced glycation end products (AGEs) have been observed in the brain tissues of patients with Alzheimer's disease (AD). Methylglyoxal (MGO) is a potent precursor of AGEs. To date, there have been no reports of utilizing deep learning (DL) technologies to target MGO scavengers for the development of AD therapeutics. Therefore, DL-driven approaches may play a crucial role in identifying potential MGO scavengers and candidates for Alzheimer's treatment. Methods: We developed "DeepMGO," a novel DL-based MGO scavenging activity prediction model, trained on 2,262 MGO scavenging activity assays from 660 compounds. Using this approach, we identified and validated TP-41 as a potential MGO scavenger in a mouse model of memory impairment. Results: DeepMGO demonstrated robust predictive performance and identified novel compounds with high MGO scavenging activity. TP-41 ameliorated depression symptoms and memory deficits in mouse models. Conclusions: Using DeepMGO, we identified TP-41 as a potential therapeutic agent for AD.-
dc.format.extent20-
dc.language영어-
dc.language.isoENG-
dc.publisherIvyspring International Publisher-
dc.titleDeep learning identifies TP-41 for methylglyoxal scavenging in Alzheimer's treatment-
dc.typeArticle-
dc.publisher.location호주-
dc.identifier.doi10.7150/thno.111550-
dc.identifier.wosid001647995000002-
dc.identifier.bibliographicCitationTheranostics, v.16, no.3, pp 1103 - 1122-
dc.citation.titleTheranostics-
dc.citation.volume16-
dc.citation.number3-
dc.citation.startPage1103-
dc.citation.endPage1122-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.relation.journalResearchAreaResearch & Experimental Medicine-
dc.relation.journalWebOfScienceCategoryMedicine, Research & Experimental-
dc.subject.keywordPlusGLYCATION END-PRODUCTS-
dc.subject.keywordPlusOXIDATIVE STRESS-
dc.subject.keywordPlusALDOSE REDUCTASE-
dc.subject.keywordPlusENZYME-ACTIVITY-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusDISEASE-
dc.subject.keywordPlusCONSTITUENTS-
dc.subject.keywordPlusCOMPONENTS-
dc.subject.keywordPlusINHIBITOR-
dc.subject.keywordPlusRECEPTOR-
dc.subject.keywordAuthormethylglyoxal-
dc.subject.keywordAuthorAlzheimer's disease-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthormemory impairment-
dc.subject.keywordAuthordrug discovery-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 식품공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Seong Min photo

Hong, Seong Min
농업생명과학대학 (식품공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE