Cited 0 time in
Mitigating phosphoric acid leaching in high-temperature proton exchange membrane fuel cells through microporous layer engineering
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Oh, Kangmin | - |
| dc.contributor.author | Kang, Hyun Woo | - |
| dc.contributor.author | Kim, Gayoung | - |
| dc.contributor.author | Cho, Jaewoo | - |
| dc.contributor.author | Kim, Daeho | - |
| dc.contributor.author | Cho, Jaehyun | - |
| dc.contributor.author | Lee, So Young | - |
| dc.contributor.author | Park, Chi Hoon | - |
| dc.contributor.author | Park, Sehkyu | - |
| dc.date.accessioned | 2026-01-29T00:30:22Z | - |
| dc.date.available | 2026-01-29T00:30:22Z | - |
| dc.date.issued | 2026-02 | - |
| dc.identifier.issn | 1385-8947 | - |
| dc.identifier.issn | 1873-3212 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/82192 | - |
| dc.description.abstract | Phosphoric acid (PA) leaching is a critical issue affecting the performance and durability of high-temperature proton exchange membrane fuel cells (HT-PEMFCs). This study presents a novel microporous layer (MPL) that is designed to effectively reduce PA discharge from the cathode catalyst layer (CL). Carbon slurries with various ethyl cellulose (EC) contents are prepared as the polytetrafluoroethylene (PTFE) dispersants and pore formers, and their dispersion behavior is analyzed using an optical analyzer and mesoscale molecular simulations. In-house-fabricated gas diffusion layers (GDLs) with optimized carbon slurries and commercial GDLs are evaluated through ex situ and in situ characterization. The results indicate that EC facilitates uniform PTFE distribution and inhibits the formation of large cracks on the MPL surface while promoting mesopore generation in the MPL through its thermal decomposition. Consequently, the optimized MPL structure effectively retards PA release from the cathode CL during extended HT-PEMFC operation, enhancing both cell performance and stability. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Elsevier B.V. | - |
| dc.title | Mitigating phosphoric acid leaching in high-temperature proton exchange membrane fuel cells through microporous layer engineering | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.1016/j.cej.2026.172770 | - |
| dc.identifier.scopusid | 2-s2.0-105027262619 | - |
| dc.identifier.bibliographicCitation | Chemical Engineering Journal, v.529 | - |
| dc.citation.title | Chemical Engineering Journal | - |
| dc.citation.volume | 529 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.subject.keywordAuthor | Ethyl cellulose | - |
| dc.subject.keywordAuthor | High-temperature proton exchange membrane fuel cells | - |
| dc.subject.keywordAuthor | Microporous layers | - |
| dc.subject.keywordAuthor | Phosphoric acid | - |
| dc.subject.keywordAuthor | PTFE | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0534
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
