Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Temporal Dynamics of Harmful Speech in Chatbot-User Dialogues: A Comparative Study of LLM and Chit-Chat Systems

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Ohseong-
dc.contributor.authorYoon, Hyobeen-
dc.contributor.authorChin, Hyojin-
dc.contributor.authorPark, Jisung-
dc.date.accessioned2026-01-08T02:30:13Z-
dc.date.available2026-01-08T02:30:13Z-
dc.date.issued2025-12-
dc.identifier.issn2076-3417-
dc.identifier.issn2076-3417-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/81653-
dc.description.abstractHarmful language in conversational AI poses distinct safety and governance challenges, as Large Language Model (LLM) chatbots interact in private, one-to-one settings. Understanding the types of harm and their temporal concentration is crucial for responsible deployment and time-aware moderation. This study investigates the types and diurnal dynamics of harmful speech, comparing patterns between play-oriented chit-chat and task-oriented LLM services.We analyze two large-scale, real-world English corpora: a chit-chat service (SimSimi; 8.7 M utterances) and an LLM service (WildChat; 610 K utterances). Using the Perspective API for multi-label classification (Toxicity, Profanity, Insult, Identity Attack, Threat), we estimate the incidence of harm categories and compare their distribution across five dayparts. Our analysis shows that harmful speech is significantly more prevalent in the chit-chat context than in the LLM service. Across both platforms, Toxicity and Profanity are the dominant categories. Temporally, harmful speech concentrates most frequently during the dawn daypart. We contribute an empirical baseline on how harm varies by chatbot modality and time of day, offering practical guidance for designing dynamic, platform-specific moderation policies.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleTemporal Dynamics of Harmful Speech in Chatbot-User Dialogues: A Comparative Study of LLM and Chit-Chat Systems-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/app152413185-
dc.identifier.scopusid2-s2.0-105025880660-
dc.identifier.wosid001646133500001-
dc.identifier.bibliographicCitationApplied Sciences-basel, v.15, no.24-
dc.citation.titleApplied Sciences-basel-
dc.citation.volume15-
dc.citation.number24-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusSLEEP-
dc.subject.keywordAuthorharmful speech-
dc.subject.keywordAuthorchatbot-
dc.subject.keywordAuthorWildChat-
dc.subject.keywordAuthorchatbot user dialogue-
dc.subject.keywordAuthorSimSimi-
dc.subject.keywordAuthoroffensive languages-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jisung photo

Park, Jisung
공과대학 (기계융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE